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Abstract
Causal inference models, like regression discontinuity (RD) design, rely upon some
variation of the no-interference assumption, where peer effects or spatial spillovers are
null. Given the increased application of network, spatial, and peer effects models, this
paper reconsiders RD design when this assumption is not satisfied, yielding indirect
effects of the treatment in addition to the traditionally measured direct effects. Using
a combination of residualization and numeric integration we develop a method—
using the Spatial Durbin Framework—which retains the full adjacency matrix and
allows for a full accounting of these cross-sectional interactions. As an application,
we revisit a well-known RD design using U.S. House of Representatives election
results from 1945–1995, finding close election wins have substantial indirect effects
which previously were unaccounted.
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1 Introduction

Regression discontinuity (RD) design has, over the previous two decades, become a
mainstay of the empirical economics research toolbox (see Lee and Lemieux 2010 for
a survey). Due to the difficulty, both in cost and ethical considerations, of random-
ized control trials (RCTs) economists have turned to this quasi-experimental design
method to better understand the [causal] impacts of policy changes. First introduced
by Thistlethwaite and Campbell (1960), RD has been used to identify the effect of
passing school levies on new residential construction (Brasington 2017), school-board
composition on student segregation (Macartney and Singleton 2017), implementation
of gifted or high achieving classrooms on minority student achievement (Card and
Giuliano 2016), traffic congestion following a cessation of public transit services
(Anderson 2014), and class size on student achievement (Angrist and Lavy 1999),
among many other topics. Peer effects, that is the impact changing one’s own charac-
teristics has on neighboring outcomes, is quickly becoming a topic of great interest
with respect to causal inference (Athey and Imbens 2017; Kolak and Anselin 2020).
The importance of these indirect effects is made clear through violations of the no-
interference assumption (see Imbens and Rubin 2015 for a discussion) which is critical
to the potential outcome framework commonly used in economic literature. This paper
reconsiders RD design when this assumption is not satisfied, yielding indirect effects
in addition to the traditionally measured direct effects.

RD exploits the common use of pre-specified treatment rules which are linked—
through a threshold of eligibility—to somecontinuousmeasurement (runningvariable)
in order to estimate the direct effect of treatment.1 Since agents cannot precisely
control, or manipulate, their relative position around the threshold they can be
thought of as pseudo-randomized. This randomization produces—at least in theory—
comparison groups which differ in expectation only with respect to the treatment
effect (Rubin 1978). The RD framework has been shown to provide close approxi-
mations to RCT results in many cases (Cook and Wong 2008) and thus has become
omnipresent in applied economics literature. Examples of continuous measurements
used in determining eligibility for treatment include: vote share (Hainmueller andKern
2008; Pettersson-Lidbom 2008; Eggers et al. 2015), test scores and academic ability
(Thistlethwaite and Campbell 1960; Van der Klaauw 2002; Jacob and Lefgren 2004),
and poverty rates (Ludwig and Miller 2007; Meng 2013), among others.

While theRD framework has turned into a nearly ubiquitous structure fromwhich to
draw causal statements it is not without its weaknesses; particularly the cross-sectional
dependence commonly found in spatial and network models. It is well known that,
in the face of such cross-sectional dependence, parameter estimates are potentially
both biased and inefficient (Anselin 1988; LeSage and Pace 2009; Pace et al. 2011).
Additionally, it has been shown that common responses to this dependence, e.g. fixed

1 Note that this is different from border discontinuity which often is used as an identification strategy in
contexts where geography is important (see Black 1999 as one example). Recent work byKolak andAnselin
(2020) emphasizes that the correct specification of the spatial process is critical in this context. We would
like to point out that this type of RD design is beyond the scope of this paper, rather we focus on treatment
assignment, which is determined not spatially, but through some other continuous running variable (e.g.,
income thresholds or vote share).
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effects and/or clustered standard errors, can exacerbate model misspecification issues
including bias, efficiency, and spuriousness of results (Anselin and Arribas-Bel 2013).
The primary issuewith these types ofmodels in anRDcontext is a clear violation of the
no-interference assumptionwhich underliesmuch of the potential outcome framework
upon which RD is based. In this paper we extend the local-linear RD to a general-
ized network RD framework—one which nests both network and non-network base
specifications as a special case—using a combination of Bayesian sampling methods,
residualization, and numeric integration. Following LeSage and Pace (2017) we use
a Monte Carlo study to show the resulting model specification produces estimates
with lower bias and mean-square-error (MSE) relative to its peers, even in the nested,
network free case. Moreover, the approach contained herein allows for a full examina-
tion of both partial and cross-partial derivatives common to both spatial and network
models (LeSage and Pace 2009).

These cross-partial derivatives, known as indirect effects, can be sizable depend-
ing on the strength of cross-sectional dependence. In a standard RD framework it
is assumed that these cross-partial derivatives are equal to zero and that the total and
direct effects of the treatment are equal. Put bluntly, this assumption prohibits the treat-
ment from spilling over to other treated or non-treated units (see Kolak and Anselin
2020 for a discussion). While this may be a suitable assumption in some limited RCT
settings—especially those with strict compliance protocols—in a quasi-experimental
framework it is overly restrictive.

Let us abstract away from the RD framework for a moment in an effort to build
some intuition. Consider the following example: we have a class of students who
are scheduled to take an exam. We would like to know what impact, if any a tutor
would have on the students’ final scores. One way this can be done is to randomize
which students get access to the treatment; the tutor in this example. As the students
enter the classroom we might flip a fair coin and assign a tutor to all students who
flip heads. For simplicity assume these tutors are homogeneous in their quality and
that the treated students fully comply with the tutor and the tutor’s methods. After
the exam we compare the scores of treated and non-treated students to estimate the
average treatment effect (ATE).

Is the ATEmeasuring only the effect of tutors on test scores? Given the information
outlined above, the answer is no. Cross-sectional dependence is introduced through a
number of channels, though the most obvious in retrospect is the students ability to
cheat off of one another. An untreated student’s test score, in the presence of cheating,
depends upon the test score of the treated and untreated students who sat next to him,
a violation of the no-interference assumption. In addition to cheating, students may
also form outside study groups comprised of both treated and untreated students. The
interaction within these groups confers some of the benefits from the tutor on those
that were not selected for treatment. The first channel is a relatively easy one to fix,
we could just produce a different exam for every student and thus prevent them from
cheating. Alternatively we could have students take the exam in isolation.2 The second

2 It is not clear that even if we gave each student a personalized exam that this channel would not produce
any cross-sectional dependence. Students may still try to cheat and rather than improve their score from
cheating off of their neighbor they may instead make their score worse. In such a situation we would have
negative cross-sectional dependence.
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channel is a bit harder to deal with though it is not clear we would want to prevent it.
Students studying is a good thing!

How does our RCT example, flawed as it may be, shed light on the issue of cross-
sectional dependence in quasi-experimental frameworks such as RD? The data we
use in RDs are not collected in an RCT setting. As a result, we may not know which
cross-sectional dependence inducing channels have been closed. For example, instead
of assigning treatment through a randommechanism we could assign the services of a
tutor based upon a student’s previous test score with some cutoff denoting eligibility.
Anyvalue drawnat or below the cutoff is treatedwhile any above the cutoff is untreated.
This is a classic RD setup in which we could examine, within a certain bandwidth,
students around the cutoff and calculate a local average treatment effect (LATE). The
assumption of course being that students one point below the cut-off are the same
as those one point above the cut-off in all aspects other than the treatment. Without
knowing if the aforementioned channels have been closed (e.g. Did the professor
randomize exams?) we have left ourselves open to bias, inefficiency, and potential
spurious results by assuming those channels had been closed. Moreover, as is often the
case,wemaybe evaluating the impact of tutors specifically so thatwe canmake apolicy
recommendation on public subsidy of tutors. If we do not fully account for the cross-
sectional dependence we may overstate (or understate—depending on the direction of
the indirect effects) the effectiveness of tutors on test scores, recommending a subsidy
which is too large (or too small) and thus create inefficiencies in public financing.

One can think of a number of situations in which we would expect cross-sectional
dependence to exist in causal studies. First, consider the significant evidence pointing
to strong cross-sectional dependence in housing markets (Kim and Goldsmith 2009;
Bin et al. 2011; Mihaescu and vom Hofe 2012; Wong et al. 2013; Lazrak et al. 2014;
vom Hofe et al. 2019) where prices are dependent not only upon the characteristics
of one’s own home, but also the price and characteristics of neighboring homes. It
follows then that any treatmentwhich affects the price of homeswould have an effect on
surrounding (treated and untreated homes). Hidano et al. (2015) use an RD framework
to examine how buyers in Tokyo evaluate seismic risk via the price premium on the
property. They are able to show that properties in a low-risk zone are at a price premium
relative to those that are outside of the low-risk zone. While their work acknowledges
the presence of cross-sectional dependence, and utilizes a spatial hedonic model in the
form of Kelejian and Prucha (1998, 1999) to support their main conclusions, they do
not incorporate the dependence into the RD framework itself and admit “…accounting
for such cross-sectional interactions in a quasi-experimental framework is challenging
and an interesting topic for future research (p. 121)”. A similar example comes in
the form of Moulton et al. (2016) which examines the benefits of targeted property
tax relief measures in Virginia, using an RD framework, and finds that increased
demand stemming from the measure lead to a 5% increase in home values. Again,
acknowledging the possibility of these cross-sectional interactions, they employ a
spatial fixed effects specification as a robustness check.

Second, and perhaps more well known to most applied economists, is the use of
RD to tease out measures of incumbency advantage. Several studies have shown that
vote share in the current election is positively impacted by close wins, as measured
by margin of victory, in previous elections (see Lee and Lemieux 2010; Chib and
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Greenberg 2014; Cattaneo et al. 2015 for example). Meanwhile, there is evidence
that voting exhibits positive cross-sectional dependence and thus would be exposed
to indirect effects (Kim et al. 2003; Cho and Rudolph 2008; Cutts and Webber 2010;
Lacombe et al. 2014). We can think of several channels by which this cross-sectional
dependence may manifest. First, while elections are district specific, the local media
coverage area my overlap with multiple districts either in part or whole. Political
advertisements would thus have an impact over multiple constituencies, even if those
advertisements are for a particular candidate. Moreover, get out the vote initiatives by
local political parties may cross district boundaries as they push for voter turnout in
the area more generally rather than in a specific district. This is particularly relevant
in situations where several tiers of government may be having simultaneous elections
(e.g. House and Senate races). We find it interesting that use of RD in this context
has become a bit controversial as researchers question if the basic assumptions of RD
are being met in the aforementioned studies (see Caughey and Sekhon 2011; Eggers
et al. 2015; De la Cuesta and Imai 2016 for a discussion). Yet, none of these criticisms
take into account the potential for cross-sectional dependence which would violate
the Stable Unit Treatment Value Assumption (Rosenbaum and Rubin 1983).

By generalizing the RD framework we are able to overcome some of these limita-
tions. We limit our generalization to the local-linear framework for two reasons. First,
recent research has shown that RD models using higher-order polynomials (e.g. third
or fourth degree) in the running variable produce poor results in practice with noisy
point estimates and confidence intervals with ill defined coverage Gelman and Imbens
(2018). Second, and perhapsmore importantly, we find that interval construction in the
local-linear method has a simple, clean form in a Bayesian context with bandwidth
selection—though important for identification purposes—playing a marginal role.
Since the distribution of the dependence parameter is of unknown form, we utilize
numeric integration to include uncertainty about both initial parameters and the band-
width in our estimate of the local average treatment effect (LATE). In each iteration
we are recalculating the bandwidth based on our uncertainty about the residualization
parameters. This creates a frontier of marginal observations which move in and out of
the estimation sample throughout the algorithm. For computational efficiency we limit
ourselves to bandwidth calculations as outlined by Imbens and Kalyanaraman (2012),
although in our empirical example we relax this requirement and show bandwidth is
not particularly relevant in that context.

Finally, we illustrate this new model specification using the now canonical exam-
ple of close elections in the U.S. House of Representatives (Lee 2008; Imbens and
Kalyanaraman 2012; Calonico et al. 2014). We show that U.S. House districts are in
fact spatially correlated and that this correlation impacts the estimates in a material
way. Our results show that close wins in a district during time t leads to an increase
in vote share at time t + 1 of approximately 15% with roughly 9% attributable to the
direct effects of treatment on the treated, and approximately 6% the result of indirect
effects. Original work by Lee (2008) and follow up work by Caughey and Sekhon
(2011) yield estimates of a direct effect between 7% and 9% depending on the specifi-
cation. Possible mechanisms which would produce the indirect effects include a shift
in ad-buying resources, increased voter turnout following a nearby win, and voter
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migration. These dimensions are not captured in the data so channels by which the
indirect effects manifest themselves are speculative.

The remainder of this paper is organized as follows. Section2 outlines the proposed
model specification including interpretation of the resulting parameter(s). Section3
includes a Monte Carlo study to examine the properties of the proposed specification.
In Sect. 4 we contextualize the generalized RD framework using close elections in
the U.S. House of Representatives. Finally, Sect. 5 concludes and offers avenues for
additional research.

2 Generalizing the RD design

This section is presented through three subsections. The first outlines the general
RD framework with focus on local-linear structures within a bandwidth around the
cutoff. The second provides background on network models. Additionally, we utilize
these first two subsections to establish the mechanical framework and notation used
in outlining our proposed model specification outlined in the third subsection.

2.1 Regression discontinuity design

RD is a method which has received quite a bit of renewed attention in recent years.
Its primary purpose is to draw out estimates which are causal in nature by exploit-
ing a deterministic relationship between a continuous running variable (RV) and a
dichotomous treatment. For concreteness, suppose there is some treatment which is a
monotonic, deterministic, and discontinuous function of some continuous variable, zi ,
where i = (1, . . . , N ). For our purposes we refer to zi as the value of the RV for the
i th individual, and Z to denote the N × 1 vector of values for each of the observations
in a sample. Further, suppose that the treatment is of the form,

qi =
{
1 zi ≥ z0
0 zi < z0

(1)

where z0 is a sharp cutoff for treatment eligibility and application. Again, we use qi
to denote treatment of the i th agent and Q refers to an N × 1 vector of indicators for
the entire sample. Note that we, for ease of exposition, confine ourselves to the sharp
RD case.

The interest here is to estimate,

E[(yi |qi = 1) − (yi |qi = 0)|zi ∈ b], (2)

where (yi |qi = 1) is the observed outcome, conditional on the i th agent being treated
(qi = 1), and (yi |qi = 0) is the corresponding counterfactual. Since the counterfactual
is unobserved, RD relies on estimating the average treatment effect by utilizing the
discontinuity of Y , within the bandwidth, b, around the cutoff, z0. This can be written
as,
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τ = E[(yi |qi = 1) − (yi |qi = 0)|zi ∈ b]
= 1

Nq=1

∑
zi∈b,qi=1

yi − 1

Nq=0

∑
zi∈b,qi=0

yi (3)

Surprisingly there are a number of ways one could estimate the treatment effect, γ ,
including local-linear methods, kernel regression, high-order polynomials, and others.
For our purposes we focus on local-linear methods, that is a pair of linear regressions
on either side of the cutoff, for a few reasons. First, this allows for the slope on
either side of the cutoff to vary (Lee and Lemieux 2010), a parameter we see no
need to constrain as equal.3 Second, it has recently been shown that inferences drawn
from high-order polynomial models are untrustworthy, with noisy point estimates and
confidence intervals with ill-defined coverage (Gelman and Imbens 2018). Using a
local-linear model in a Bayesian framework produces transparent credible intervals
using standard probability theory, a point to which we will return later. Finally, while
the econometric literature focusing on RD tends towards relaxing the assumptions of
linearity the most common use in applied work tends to include linear assumptions
as a primary modeling mechanism, see Thistlethwaite and Campbell (1960), Ludwig
and Miller (2007), and Hidano et al. (2015) among others.

Prior to estimating a local-linear model it is necessary to establish a bandwidth, b,
which is the subset of observations deemed to be quasi-randomized. This bandwidth is
data driven and identifies which observations are likely to be interchangeable around
the cut-off. As one would expect, since this bandwidth requires a researcher to discard
data, those observation outside of the bandwidth, there is quite the discussion regarding
its selection. The methodology here is presented using the data-driven bandwidth
constructed by Imbens and Kalyanaraman (2012), though bandwidth construction
using methods outlined by Calonico et al. (2014) is more commonly used in current
empirical work. The reason for our use of bandwidths calculated using methods from
Imbens and Kalyanaraman (2012) will become apparent later. It is important to note
that construction of the bandwidth and subsequent discarding of data is done solely
for identification purposes. It facilitates the imitation of an RCT and allows for the
parameter estimate to be viewed as causal rather than correlative.

Going forward, and for concreteness, we will use ·̄ to denote observations above the
cutoff, and ·̄ for those below. Local-linear methods estimate the treatment parameter,
γ , using only those observations in b, through the use of two equations:

Ȳ = γ̄ Z̄ + ε̄, ε̄ ∼ N (0, σ̄ 2), (4)

¯Y =
¯
γ ¯Z + ¯ε, ¯ε ∼ N (0, ¯σ

2), (5)

3 In fact, as stated in Lee and Lemieux (2010), constraining the slope on either side of the cutoff to be
equal is counter to the entire spirit of regression discontinuity. Rather than two regression equations, one for
either side of the cutoff, a constrained slope on the running variable would be produced through a pooled
regression, Y = αl + τ ∗ Q + f (Z − z0) + ε (see Section 4.3 p318). They show that if the constraint is
enforced then data from the right side of the cutoff would be used to estimate the pertinent parameter on
the left and vice versa.
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where Z̄ = [ιn̄ (Z̄ − z0)], γ̄ = [γ̄ ζ̄ ]′,
¯
γ = [

¯
γ

¯
ζ ]′. By centralizing the RV through

(Z̄ − z0) and ( ¯Z − z0) the intercept of each equation provides the value at z0, or more
directly, the difference between them, γ = γ̄ −

¯
γ , outlines the size of the discontinuity

at the threshold, which is the parameter of interest. Again, it is important to recognize
that this is a local average treatment effect and any generalizations to the average
treatment effect on the population should be tempered by the lack of external validity
in the method.

2.2 Networkmodels

Peer effects, that is the impact of changing one’s own outcome or characteristics has
on neighboring outcomes, is quickly becoming a topic of great interest with respect to
causal inference (Athey and Imbens 2017; Kolak and Anselin 2020). The importance
of peer effects is made clear through violations of the no-interference assumption (see
Imbens and Rubin 2015 for a discussion) which is critical to the potential outcome
framework commonly used in economic literature. Our main purpose in this section is
to provide the notational framework we will use going forward. Networks are charac-
terized in variety of ways, however a few attributes are relatively ubiquitous through
the literature. First, each network is typically represented by a graph, G. this graph is
made up of vertices, V , and edges, E . The vertices are indexed by i = 1, . . . , N , are
typically a finite set, and are the unit of observation in the analysis (e.g. agents, firms,
regions, etc.). An edge is formed when two agents are connected, that is i j ∈ E .

Algebraically, these graphs are represented through an adjacency or weight matrix
which we will denote as G. Let gi j = 1 if an edge exists between agents i and j
and zero otherwise. In a directed graph it is not necessary that the connection be
reciprocated, that is gi j �= g ji ∀ i, j , while in an undirected graph gi j = g ji ∀ i, j .
We assume that agents cannot be connected to themselves, that is gii = 0 ∀ i , and as a
result the maximum number of connections is N 2 − N , though in practice this matrix
tends to be quite sparse. Finally, we make no assumption regarding the symmetry of
G and use an asymmetric weight matrix for simulations in Sect. 3, and a symmetric
matrix in Sect. 4.

Using the above notation we can write the following model,

yi = α + ρ

N∑
j=1

gi j y j +
K∑

k=1

N∑
i=1

βk xki +
K∑

k=1

N∑
j=1

φkgi j x
k
j + εi . (6)

Which we can write in matrix form as,

Y = ρGY + Xβ + GXφ + ε (7)

with the data generating process written as,

Y = (IN − ρG)−1(Xβ + GXφ + ε). (8)

123



Indirect effects and causal inference: reconsidering… Page 9 of 28     8 

As defined earlier, Y , is the N × 1 vector of outcomes and X is an N × K information
matrix. We assume that the error term, ε is identically and independently distributed
with mean zero and variance σ 2. Additionally, we assume that G is exogenous.4

In this structure both GY and GX represent the linear combination of connected
agent outcomes and characteristics respectively. Astute readers will recognize this as
the Durbin class of model commonly used in spatial econometrics (LeSage 2014). In
practice this matrix is often row-normalizedmeaning that the term ρGY represents the
weighted average of neighboring outcomes. Additionally, the row-normalization acts
as a bounding mechanism ensuring that ρ ∈ (ψ−1

min, 1) where ψ−1
min is the minimum

real eigenvalue of G.
It is important to note that the partial derivative from the network model outlined

above differs dramatically from those of a standard linear regression. For the kth
variable the partial derivative for the form can be expressed as,

δy/δxk = (IN − ρG)−1(INβk + Gφk), (9)

while the latter is n−1tr(INβk), where tr(·) is the trace operator; this simplifies to
β. Since Eq.9 is a dense matrix representing a global spillover structure it is useful
to convert the information into scalar summaries (LeSage and Pace 2009). Letting
SK (G) = δy

δxk
, the total impact to an observation is n−1ι′n(Sk(G)ιn) while the total

impact from an observation is n−1(ι′n Sk(G))ιn , where ιn is an N -dimensional vector
of ones (LeSage and Pace 2009). In practice, for an undirected and symmetric weight
matrix, these are the same value and are known as the total effects. Total effects can
be decomposed into direct and indirect effects:

n−1(ι′n Sk(G))ιn︸ ︷︷ ︸
Total Effects

= n−1tr(Sk(G))︸ ︷︷ ︸
Direct Effects

+ (
n−1(ι′n Sk(G))ιn − n−1tr(Sk(G))

)
︸ ︷︷ ︸

Indirect Effects

(10)

The direct effects, that is the impact of changes in one’s own characteristics as well as
feedback stemming from changes in one’s neighbors, are n−1tr(Sk(G)), where tr(·)
is the trace operator. The indirect effects are simply the total minus the direct effects
and represent the average cross-partial derivative. These summary measures reflect
how changes propagate through the simultaneous dependence structure and result in
a new steady state.

2.3 Network regression discontinuity design

The previous two sections have shown that in order to properly identify the treatment
effect in an RD setting it is preferable, if not necessary, to cutaway the data not
within the bandwidth around the cutoff. This leaves a quasi-randomization of the
remaining observations around the cutoff—thereby approximating an RCT—which is

4 We recognize that this is a very restrictive assumption and that it is unlikely, at the individual level, to hold
with any degree of certainty. Endogenous weight matrices have seen a great deal of research work lately
and we encourage readers to see Kelejian and Piras (2014), Hsieh and Lee (2016), Han and Lee (2016),
Hsieh and Lin (2017) and Shi and Lee (2018) among others for examples.
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then subject to a local linear model (or alternative specification e.g., non-parametric
modeling) to estimate the treatment effect. This is in direct conflict with the concept
of network models, which shows that the connectivity structure of the network is
important to accurate inference from any model.

The root issue of incorporating these cross-sectional interactions lays with the
structure of the adjacency or weight matrix. This matrix defines the connectivity
structure—how information is transmitted between the observations—and includes
interactions between those agents within the bandwidth around the cutoff, and those
that are not. Removing these observations introduces bias in the parameter estimates
since the outcomes of those in the bandwidth may be dependent upon those of the
discarded observations, or their characteristics.5

We solve this problem through a multi-stage estimation procedure which incorpo-
rates elements of residualization and numeric integration nested within a Bayesian
sampler. We do this in three general stages:

1. Residualize the outcome by using the appropriate spatial specification (e.g., Eq. 7).
Note that the treatment variable is not included in this stage and as a result is
captured in the residuals. Conditional upon these parameters, filter the network
effects out of the residuals.

2. Estimate the treatment effect using the filtered residuals on a weighted sub-sample
determined by the chosen kernel and bandwidth.

3. Conditional upon the estimated treatment effect, re-estimate the original spatial
specification using the entire sample.

The first stage requires us to residualize the outcome by estimating the parameters
of interest in the model outlined by Eq.7; think of this as netting out the variation
from characteristics which are not our treatment while at the same time estimating the
scalar parameter governing strength of the network. Residualization is by no means
novel in and of itself, it has become quite popular over recent years (Sales and Hansen
2014; Chernozhukov et al. 2017; Terrier and Ridley 2018). Since the residuals are a
function of an unknown parameter, ρ, and an observed connectivity structure, G, we
employ numerical integration to marginalize ρ as a nuisance parameter.6 To do this
we assume that the connectivity matrix, G, is strictly orthogonal to the treatment, Q.
That is, treatment on observation i will impact the outcome for observation i but does
not influence if observation j is treated and impacts the outcome of j only through
changes in the outcome of i .

With this in mind, consider the following:

p(β, φ, σ 2, ρ|Y , X , G) ∝ π(β, φ, σ 2)π(ρ)p(Y , X , G|β, φ, σ 2, ρ), (11)

where p(Y , X , G|β, φ, σ 2, ρ) is the likelihood, π(β, φ, σ 2) and π(ρ) represent suit-
able priors over the listed parameters, and p(β, φ, σ 2, ρ|Y , X , G) is the joint posterior

5 It is important to remember that we are not saying the probability of an agent being treated is conditional
upon another agent receiving treatment. Rather that their [the untreated agent] outcome is dependent on the
characteristics and outcome of the treated agent.
6 We recognize that new work addresses the inclusion of covariates in the RD design (Frölich and Huber
2019; Calonico et al. 2019) though we stop short of implementing this since our objective is primarily to
exploit the structure of the error term in an effort to marginalize the network.
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distribution. Assuming the process is linear, or is appropriately modeled as such, and
utilizing the common Normal Inverted-Gamma (NIG) structure we can write (11) as,

p(β, φ, σ 2, ρ) ∝ σ−n−1|A|
× exp

[
− 1

2σ 2

(
(AY − Xβ − GXφ)′(AY − Xβ − GXφ)

)]
π(ρ),

(12)

where A = (IN − ρG) and π(ρ) is the prior distribution on ρ.7 Typically, this is
either a Uniform or Beta distribution (see LeSage and Pace 2009 for a discussion).
Note we have included the intercept as a column of ones in X . This is the posterior
form for equation (7). First, let B = [β ′, φ′]′, XG = [ιN X GX ], π(B) ∼ N (b0, V0),
π(σ 2) ∼ IG(a0, c0), and π(ρ) ∼ Beta(a1, a2). This leads to a sampler based on the
following conditional distributions,

p(B(m)|σ 2
(0), ρ(0)) ∼ N (DBdB, σ 2DB) (13)

DB = (X ′
GXG + V−1

B )−1

dB = X ′
G(I − ρG)Y + VbbB

p(σ 2
(m)|ρ(0), β(m)) ∼ IG(a, c) (14)

a = a0 + N/2

c = c0 + (AY − XGB)′(AY − XGB)/2

A = (I − ρG)

p(ρ(m)|β(m), σ
2
(m)) ∝ |I − ρG| exp

(
1

2σ 2 (AY − XGB)′(AY − XGB)

)
(15)

Note that Eq.15 is of unknown form leading to either a draw by integration and
inversion (aka “Griddy Gibbs”) or a Metropolis–Hastings (M–H) step (LeSage and
Pace 2009). So far, we have broken no new ground and these results are well known;
it is here where we depart from the standard approach.

Having obtained estimates for B, σ 2, and ρ we residualize the outcome by sub-
tracting the conditional mean, (I − ρG)−1XGB. However, we cannot simply use this
residualized outcome since it is still a function of ρ and G. Consider the following,

ε(m) = Y − (I − ρ(m)G)−1XGB(m) (16)

which implies that,

ε(m) ∼ N (0, (I − ρ(m)G)−1(I − ρ(m)G)−1′
τ). (17)

7 It is not required that we assume linearity, in fact this has been done primarily as a convenience. In practice
any likelihood function can be substituted in place of the normal distribution and conditional posteriors
derived. This means that the error term need not be normally distributed though we do require it to be
independent and identically distributed.
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Using this, we filter ε by numerically integrating over ρ and B. That is to say, for each
draw (m) of ρ and B in the sampler we create a new vector of filtered residuals by,

ε̃(m) = (I − ρ(m)G)(Y − (I − ρ(m)G)−1XGB(m)), (18)

which results in,

ε̃(m) ∼ N (0, I τ), (19)

where m = 1, . . . , M and M is a suitable number of post burn-in iterations through
the sampler.

Here we have residualized the outcome as mentioned in Lee and Lemieux (2010)
and then, recognizing that the residuals are correlated, transformed them through
our draw of the dependence parameter. Subjecting ε to a Moran I test for cross-
sectional correlation would tend to reject the null of no correlation, while the opposite
is true for ε̃. It is important to remember that, since ρ is an unknown parameter
with unknown form, the filtering of residuals with each draw from the joint posterior
ensures uncertainty from the initial parameter estimates will propagate through the
remainder of the sampler. At this point it should be clear that we have distilled this
larger problem involving cross-sectiondependence throughnetwork connections down
to a more simple structure that fits within the traditional RD framework.

Now that we have a residual, ε̃, which is orthogonal to G, X , GX , and ρ we can
consider establishing a bandwidth round the cutoff z0. Here, for the sake of brevity and
computational efficiency, we use methods from Imbens and Kalyanaraman (2012) to
calculate the bandwidth around z0. Note that we do this M number of times over the
course of our sampler with M different vectors of residuals; as a result our estimate of
the bandwidth will change at each iteration. These changes come from the posterior
draw of the relevant residualization and filtering parameters creating a new set of
residuals for each iteration. This creates a frontier of marginally relevant observations
which move into, and out of the estimation over the sampler iterations. Since these
bandwidths are data driven, and each time our data is changing based on uncertainty
around the residualizing parameters, we aremarginalizing the bandwidth as a nuisance
parameter much like we did with the network itself. Additionally, this allows us to plot
the posterior distribution of the bandwidth and construct posterior density intervals
that quantify how much the bandwidth changes over the sampler.

Again, we assume that the resulting treatment can be modeled using a local-linear
structure and using a NIG structure, see Eqs. (4) and (5), for both observations above
and below the cutoff we sample from the following conditional distributions:

p

(
γ̄(m)|τ̄(0), ¯̃ε(m), (Z̄ − z0)

)
∼ N (Dγ̄ , dγ̄ , τ̄Dγ̄ )

Dγ̄ = (Z̄′ Z̄ + V−1
γ̄ )−1

dγ̄ = Z̄′ ¯̃ε + Vγ̄ bγ̄ (20)

p

(
τ̄(m)| ¯̃ε(m), (Z̄ − z0), γ̄(m)

)
∼ IG(ā, c̄)
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ā = ā0 + N̄/2

c̄ = c̄0 + ( ¯̃ε − Z̄γ̄ )′( ¯̃ε − Z̄γ̄ )/2 (21)

p

(
¯
γ(m)|¯τ(0), ¯̃ε(m), ( ¯Z − z0)

)
∼ N (D

¯
γ , d

¯
γ , ¯τD¯

γ )

D
¯
γ = ( ¯Z

′
¯Z + V−1

¯
γ )−1

d
¯
γ = ¯Z

′
¯̃ε + V

¯
γ b

¯
γ (22)

p

(
¯τ(m)|¯̃ε(m), ( ¯Z − z0), ¯

γ(m)

)
∼ IG(¯a, ¯c)

¯a = ¯a0 + ¯N/2

¯c = ¯c0 + (¯̃ε − ¯Z¯
γ )′(¯̃ε − ¯Z¯

γ )/2 (23)

where γ̄ and
¯
γ represent the vector of parameters, γ and ζ , above and below the cutoff

first introduced in Eqs. (4) and (5). We use Z̄ to denote the matrix [ῑ Z̄ ], where ῑ is a
vector of ones above the cutoff, and ¯Z below. For this stage we use kernel weighted
observations based on the distance from the cutoff using Imbens and Kalyanaraman
(2012). Draws from these conditional distributions produce a filtered local average
treatment effect (LATE), γ = γ̄ −

¯
γ .8

Since there is a great deal of consternation with respect to appropriate inference
from RD type models (Calonico et al. 2014; Gelman and Imbens 2018) we would like
to take a few moments and point out what is rather transparent in a Bayesian sense but
not so much when using frequentist estimation methods. The LATE, γ = γ̄ −

¯
γ , is

the difference between two conditional Gaussian distributions, which produces a new
Gaussian distribution with mean μ1 − μ2 and variance σ 2

1 + σ 2
2 − 2Cov(·), where

Cov(·) is the covariance. In Sect. 3 we show, through simulations, that the intervals
produced for γ by the process outlined herein are nearly equivalent to those found by
using interval estimates from Calonico et al. (2014).

Obtaining a filtered estimate of the LATE puts us in similar position to current RD
methodology, and indeed if that is all one was interested in then stopping here seems
appropriate. However, as mentioned earlier, we are interested in being able to evaluate
a policy which may produce spillovers relevant to its evaluation. To accomplish this
we return to the original model in our sampler and, conditional upon the data and the
drawn LATE, sample from the following conditional distributions:

p
(
B(m)|σ̃ 2

(0), ρ̃(0), γ(m) = (γ̄(m) −
¯
γ(m))

) ∼ N (D̃B d̃B , σ̃ 2 D̃B) (24)

D̃B = (X ′
GXG + V−1

B )−1

d̃B = X ′
G(AY − γ Q) + VBbB

p
(
σ̃ 2

(m)|ρ̃0, γ(m) = (γ̄(m) −
¯
γ(m)), B(m)

) ∼ IG(ã, c̃) (25)

8 We would like to point out two important points regarding this estimate. First, because we have filtered
out the network effects this estimate is a simple parameter estimate and does not give any indication of the
spillovers that may take place due to the treatment. Finally, we do not include the spatially lagged running
variable term for two reasons: first, the object of interest is γ for each equation, not the additional parameter
estimates. Second, since we condition the third stage upon this particular value, the impact of a spatially
lagged running variable, if any, would not be included in the third stage or subsequent partial derivatives.
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ã = a0 + N/2

c̃ = c0 + (AY − XGB − γ Q)′(AY − XGB − γ Q)/2

p
(
ρ̃(m)|γ(m) = (γ̄(m) −

¯
γ(m)), B(m), σ̃

2
(m)

) ∝ |I − ρ̃G|

× exp

(
1

2σ̃ 2 (AY − XGB − γ Q)′(AY − XGB − γ Q)

)
.

(26)

Recall that B = [β ′,′ φ′]′, Q is the vector of treatment indicators outlined in Eq.
(1), and the estimates for both β and φ are conditional upon the γ = γ̄ −

¯
γ values.

This is particularly relevant since the estimates which produce γ come from a smaller
sample size, and as mentioned earlier, the variance of the LATE is equal to the sum of
its component variances. By conditioning upon these draws from Eqs. (4) and (5) we
carry that uncertainty into the full sample estimates of other parameters.

The full algorithm can be written as:9

1. Establish parameters on prior distributions, arbitrary starting values for each
parameter, and number of iterations with suitable burn-in period.

2. Sample from p(B(1)|σ 2
(0), ρ(0)) ∼ N (DBdB, σ 2

(0)DB)

3. Sample from p(σ 2
(1)|ρ(0), B(1)) ∼ IG(a, c)

4. Sample from

p(ρ(1)|B(1), σ
2
(1) ∝ |I − ρ(1)G|

× exp

(
1

2σ 2
(1)

(AY − XGB(1))
′(AY − XGB(1))

)
(27)

using “Griddy Gibbs” or M–H.
5. Create vector offiltered residuals via ε̃(1) = (I−ρ(1)G)(Y−(I−ρ(1)G)−1XGB(1))

6. Calculate the bandwidth using chosen method conditional on ε̃(1).
7. Sample from p

(
γ̄ |τ̄(0), ε̄(1), (Z̄ − z0)

) ∼ N (Dγ̄ dγ̄ , τ̄Dγ̄ )

8. Sample from p
(
¯
γ |¯τ(0), ¯ε(1), ( ¯Z − z0)

) ∼ N (D
¯
γ d

¯
γ , ¯τD¯

γ )

9. Sample from p
(
τ̄(1)|γ̄ , ε̄(1), (Z̄ − z0)

) ∼ IG(ā, c̄)
10. Sample from p

(
¯τ(1)| ¯

γ , ¯ε(1), ( ¯Z − z0)
) ∼ IG(¯a, ¯c)

11. Sample from p
(
B(1)|σ̃ 2

(0), ρ̃(0), γ(1) = (γ̄(1) −
¯
γ(1))

) ∼ N (D̃Bd̃B, σ̃ 2
(0) D̃B)

12. Sample from p
(
σ̃ 2

(1)|ρ̃(0), γ(1) = (γ̄(1) −
¯
γ(1)), B(1)

) ∼ IG(ã, c̃)
13. Sample from

p
(
ρ̃(1)|γ(1) = (γ̄(1) −

¯
γ(1)), B(1), σ̃

2
(1)

) ∝ |I − ρ̃(1)G|
× exp

(
1

2σ̃ 2
(1)

(AY − XGB(1) − γ(1)Q)′(AY − XGB(1) − γ(1)Q)

)

using “Griddy Gibbs” or M–H.
14. Return to 2. until M number of draws is complete where M is a suitable post

burn-in value.

9 We are happy to provide both an example file and full code, written in Matlab, upon request.
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The result of this sampler is the ability to evaluate the LATE estimate within the
context of cross-sectional interactions. We want to highlight an important assumption
that the reader shouldn’t forget. The estimate produced using Eqs. (20) and (22) is
a local average, not an average, treatment estimate. By conditioning the full sample
estimates on the LATE we are using the LATE as a proxy for the ATE, specifically so
that we can evaluate the partial derivatives of the Durbin model.

The partial derivative with respect to the treatment effect can be written as,

�y/�q = Sγ (G) = (In − ρ̃G)−1(Inγ ). (28)

This partial derivative is a densematrixwhich outlines the long-run equilibrium effects
of changes on treatment status. Note that this partial derivative is different from that
outlined in Eq.9. Since Q is a deterministic function of Z it stands to reason that any
network based lag effect of treatment would be contained in GZ rather than GQ. For
example, if Z were test scores as in Thistlethwaite and Campbell (1960), and Q was
the resulting scholarship award contingent upon Z , then the test scores of neighbors
would be important, not the scholarship receipt. While one might want to include GZ
in the second stage of the sampler we would recommend against that for two reasons.
First, there is a deterministic link between Q and Z through the threshold, and while
zi determines agent i’s eligibility for treatment it is not the case that z j would impact
qi . Second, GZ would not appear in the partial derivative above because what is
carried through to the third stage is the difference in intercept from the local-linear
equations, not the additional parameters. Finally, recall that the second stage of the
sampler is using only observations within the bandwidth and thus GZ cannot be used
in its entirety anyway.

From this matrix we construct scalar summaries to characterize the effects (LeSage
and Pace 2009). Total effects, n−1ι′n(Sγ (G)ιn), can be decomposed into the direct
and indirect effects as outlined in Eq.10. Direct effects are the average of the main
diagonal, n−1tr(Sγ (G)), where tr(·) is the trace operator; which represents the direct
effect of the treatment on the treated. It should be noted that, since Eq.28 can be
written as a Taylor expansion, the main diagonal includes feedback from higher
order terms. The indirect effects are the average of cumulated off-diagonal terms,
n−1ι′n(Sγ (G)ιn) − n−1tr(Sγ (G)).This means the scalar summary expressions reflect
an average of cumulative spillovers from treatment on treated and untreated units alike,
where cumulation is over neighboring observations and averaging takes place across
all sample observations. Current RD frameworks assume that these indirect effects are
zero through the no-interference assumption.

In this section we outlined how to obtain causal estimates of a treatment effect in the
presence of cross-sectional interactions commonly found in network models. In the
next section we will present Monte Carlo study results, which show that the proposed
method acts as a generalized RD framework not only allowing for the valuation of
richer partial derivative but also producing estimates with reduced bias and mean
square error at ρ = 0.
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Fig. 1 Example of simulated data set

3 Simulations

To study the efficacy of the proposed model specification we performed aMonte Carlo
study where the primary data generating process can be written as:

Y = (I − ρG)−1(Xβ + GXφ + γ Q + ε), (29)

qi =
{
1 zi ≥ z0
0 zi < z0

(30)

ε ∼ N (0, σ 2). (31)

In each simulation the sample size is N = 1, 500 and the number of covariates, K ,
is set to four. The network is constructed by distributing the sample across a plane
and using Voronoi Tesselation to construct an undirected adjacency matrix. We use a
queen contiguity design—that is connections are determined through shared borders
and vertices—and while the results presented herein use only this structure, addi-
tional simulations have been done using other common structures (e.g. rook or bishop
contiguity, K -nearest neighbor, minimum distance, etc.) as well as directed graph
structures more commonly found in network analysis; code for this is available upon
request. The information matrix, X , is drawn from a multivariate normal distribution
such that X ∼ MVN(0, Iσ 2) with β1 = · · · = βk = 1 and φ1 = · · ·φk = 0. The
running variable is distributed as Z ∼ N (70, 16) with z0 = 73 resulting in 21.4% of
the observations being treated. We set γ = 2 for all simulations. Figure1 provides a
visual reference for one data set generated under the outlined parameters. Note that
this data set is one which exhibits no cross-sectional dependence (i.e. both ρ = 0 and
θ = 0).

The dependence parameter is partitioned into 91 segments over the interval
(−0.90, 0.90) with 1008 simulations completed for each value of ρ. Since G is fixed,
the domain of ρ remains fixed over the interval (−2.005, 1.000); our simulations are
over a smaller interval because in practice negative values are rare, let alone large
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Table 1 Comparison of
parameter estimates: a selected
look

IK CCTc CCTr CG Prop

ρ = 0.00

Bias −0.17 −0.05 −0.04 -0.05 −0.03

SE/SD 0.19 0.20 0.23 0.25 0.25

MSE 0.06 0.04 0.06 0.05 0.03

BW 3.41 2.33 2.33 – 3.15

ρ = 0.50

Bias −0.17 −0.08 −0.13 −0.09 −0.03

SE/SD 0.21 0.26 0.31 0.30 0.25

MSE 0.06 0.08 0.07 0.07 0.03

BW 3.46 2.10 2.10 – 3.17

ρ = −0.50

Bias 0.03 0.14 0.18 0.15 −0.04

SE/SD 0.21 0.24 0.28 0.28 0.25

MSE 0.03 0.08 0.11 0.08 0.03

BW 3.52 2.22 2.22 – 3.13

In this table we present the bias, standard error or deviation (SE/SD),
mean-square-error (MSE), and Bandwidth (BW) for each of the eval-
uated estimation method, including the proposed (Prop), over the set
of simulations for each value of ρ ∈ {0.00, 0.50,−0.50}. The BW
reported for the proposed method is the mean of the posterior distribu-
tion for the bandwidth. In particular, note that the standard deviation of
the proposed method is larger than the alternatives despite the middle
ground of the bandwidth

negative values. For each simulation we fix X , G, R and Q, drawing a new ε with σ 2

such that the signal-to-noise ratio is maintained between 0.70 and 0.85 as calculated
in LeSage and Pace (2017).

With these MC simulations we have two primary goals. First, we want to demon-
strate that, over the domain of ρ, the proposed method is well-behaved with respect
to recovering the true treatment parameter.10 For comparison, we will repeat the sim-
ulations using methods outlined by Imbens and Kalyanaraman (2012), Calonico et al.
(2014) (both conventional and robust), and Chib and Greenberg (2014); the latter of
which is a Bayesian nonparametric take on sharp and fuzzy RD structures.11 Second,
andmore importantly, wewant to illustrate the difference in partial derivatives between
the proposed and alternative methods. In all cases we employ a set of uninformative,
but proper priors. Table1 outlines the treatment parameter at ρ = (−0.50, 0.00, 0.50)
using each of the five methods.

It is important to note several subtle differences in this table between the established
methods and the proposed. First, we choose to characterize the posterior distribution

10 We present—for brevity—only the results for the parameter of interest, however the additional estimates
(e.g. β or φ) are available upon request.
11 For brevity we will not explicitly cover the details of each estimator, rather we encourage readers to visit
the originating papers for more detailed information. Our primary focus in this comparison is that none of
these RD estimators allow for spillover effects and thus, by construction, assume that ρ = 0.
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of the proposed through its mean. This choice is made because the methodology being
evaluated is a sharp RD structure, and it is expected that γ is distributed in a Gaus-
sian manner. This may not always be the case. For instance, in a Fuzzy RD structure
the distribution of γ is a ratio of normal distributions, and it would likely be more
appropriate to characterize that posterior through its mode. In both cases the value
presented is the average of point estimates or posterior mean values where applicable.
Additionally, while the values are similar, the standard deviation of themarginal poste-
rior distribution is not equivalent to the standard error of the frequentist point estimate.
Under very specific circumstances (e.g. known variance, flat priors) these two values
can be equivalent, however in practice they generally are very different. Finally, under
the proposed estimation method a bandwidth is calculated with every iteration of the
algorithm. The value reported in Table1 is the average bandwidth calculated over all
simulations.12

Since the non-spatial model is a special case of an SDM, the first block in Table1
outlines estimateswhere the trueDGPmatches the assumptions of existingRDmodels.
Here we can see that, despite ρ = 0, the model uncertainty is such that the standard
deviation of the posterior for treatment is slightly larger than that of Calonico et al.
(2014). The downward bias comes from the marginalization of initial parameters used
to residualize, and it is clear from these results that even atρ = 0 both the estimator bias
and mean-squared error (MSE) are lowest in the proposed specification as compared
to the alternative(s). Moving away from the case where ρ = 0 we see an increase in
both bias and MSE for each of alternative estimators. This bias is inversely related
to the sign of ρ such that if ρ > 0 the bias is negative and if ρ < 0 it is positive.
Moreover, the data-driven bandwidths produced by the estimators vary as ρ changes
indicating a bias in the bandwidth determination that is introduced from the spatial
dependence. Overall, Table1 indicates that the proposed estimator produces estimates
with less bias and mean-squared-error while producing consistent posterior standard
deviations and bandwidths over the domain.

For the frequentist estimators we take the average of standard errors to construct
the confidence interval for those simulations, outlined in Table2. At ρ = 0, and
indeed for each of the four values, this confidence interval contains the true value on
average. Despite containing the true value on average, these intervals are getting wider
as ρ moves away from zero. The intervals, while similar in value for ρ = 0, differ
through their interpretation. Intervals using methods outlined by Chib and Greenberg
(2014) and the proposed method are the 95% highest posterior density (HPD), which
is the shortest of possible Bayesian intervals (Casella and Berger 2002). Unlike the
confidence interval, an HPD is a probability statement specifically indicating that the
true value lies within the interval with probability 0.95. Going forward we will refer to
these intervals in a comparative, and interchangeable fashion, thoughwe encourage the
reader to see Casella and Berger (2002) and Gelman et al. (2013) for a full discussion
of the differences.

It is with this in mind that we would like to point out the similarities, at ρ =
0, between the constructed CIs and HPDs found in Table2. Note that, according

12 Again, we have chosen to characterize this value by its posterior mean however this distribution is
tends to be skewed and/or multi-modal and it may be more appropriate to report mean, mode, and interval
estimates for those who are interested.
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Table 2 Interval estimates: a selected look

Method ρ = 0.00 ρ = −0.50 ρ = 0.50
Mean L95 U95 Mean L95 U95 Mean L95 U95

IK 1.83 1.40 2.26 1.83 1.40 2.26 1.97 1.54 2.40

CCTc 1.95 1.57 2.34 1.92 1.40 2.44 2.14 1.67 2.61

CCTr 1.96 1.50 2.41 1.87 1.26 2.48 2.18 1.63 2.73

CG 1.95 1.49 2.42 1.91 1.33 2.50 2.15 1.59 2.70

Prop 1.97 1.47 2.46 1.97 1.48 2.46 1.97 1.47 2.46

The true value of the treatment effect is γ = 2. The intervals presented are the 95% CI or highest posterior
density where applicable

to Calonico et al. (2014), the main difference between the CI of conventional RD
estimation and their robust estimator is the bias correction in the bandwidth, and new
standard error calculations based on that correction. Their method ultimately produces
a smaller bandwidth with larger standard errors that have better coverage properties.
Indeed, our simulations confirm these results and estimators from Calonico et al.
(2014) do in fact have simulated coverage closer to 95% when ρ = 0. However, over
the domain of ρ, coverage for estimates from both Calonico et al. (2014) and Imbens
and Kalyanaraman (2012) methods vary wildly from a low of 80% to a high of 100%.

Of course, the parameter itself in a Durbin model is of little importance since it is
only one input into the partial derivative. It may then be useful to consider comparing
the direct effects. By assumption there are no spillovers in typical RD estimation
methods, meaning that the direct effects are explicitly assumed to be equivalent ot the
total effects. Figure2e, f outline the bias and MSE if the estimates from non-spatial
estimation methods are considered to be direct effects themselves. A similar story
emerges under this view; the bias and MSE are both U-shaped, however many of the
curves have shifted down, with absolute bias being smaller inmagnitude. Interestingly,
for estimates produced using methods outlined by Imbens and Kalyanaraman (2012),
at no point under the domain examined is there not a bias where as, when comparing
the parameters direct, the bias disappeared at ρ ≈ −0.50. Meanwhile, the cross for
other alternative estimation methods still occurs at ρ ≈ 0 showing that they have an
unbiased estimate of the treatment with no spatial dependence.

Table3 shows that, if ρ �= 0, the direct effect, as estimated using methods put
forth by both Calonico et al. (2014) and Imbens and Kalyanaraman (2012), are close
to the true value but exhibit noticeable bias with relatively wide confidence intervals
(as compared to ρ = 0). More striking is the estimate of the total effect. For ρ =
−0.50, the estimate of the total effects from both Calonico et al. (2014) and Imbens
and Kalyanaraman (2012) estimators overstate the welfare effect of the treatment by
≈ 64%. For values of ρ = 0.50 the opposite is true, the estimators of Calonico et al.
(2014) and Imbens and Kalyanaraman (2012) understate the total welfare effect by
≈ 100%. Remember that for conventional estimators there are no indirect effects
by construction. As a result, the total effect is the direct effect. This is particularly
pertinent to policy decisions based on the effect size since inaccurate assessment of
effect size can create inefficiencies in public spending on that treatment.
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Fig. 2 Bias and MSE treatment effects. NoteHere we have plotted the bias and mean squared error for each
facet of the treatment parameter (e.g., direct and indirect effects). For each estimator, CCT Conventional
(red solid line), CCT Robust (blue short dashed line), IK (orange dotted line), CG (purple long dashed line),
and the proposed (black dotted dashed line) we plot the corresponding measure over the domain of ρ

4 Empirical example: U.S. house elections

To ground the proposed method in real data we turn to what has become a common
example used in RD econometrics literature; election results from U.S. legislative
bodies. These studies often look at party incumbency effects by the U.S. House of
Representatives (Lee 2008;Broockman2009;Butler 2009;Caughey andSekhon2011;
Choet al. 2012;Calonico et al. 2014) orU.S. Senate (Albouy2013;Chib andGreenberg
2014). Here we look at results from elections in the U.S. House of Representatives
from 1946 until 1996 and, similar to both Lee (2008) and Caughey and Sekhon (2011),
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Table 4 Summary statistics:
U.S. house elections 1945–1995

Variable Mean SD Minimum Maximum

DPctNxt 56.43 24.01 0.00 100.00

DifDPct 14.66 47.09 −100.00 100.00

SoSDem 0.63 0.48 0.00 1.00

DifPVDec −0.01 0.26 −0.87 0.91

GovWkPct 4.97 2.55 0.04 19.63

UrbanPct 65.72 26.59 0.00 100.00

BlackPct 10.70 14.09 0.02 92.07

ForgnPct 5.31 6.47 0.00 58.52

N 7949

we look at the effect of a close (Democrat) win, as measured by margin of victory
(DifDPct), in time period t on vote share (Democrat) in time period t+1 (DPctNxt).13

While additional information is not strictly necessary (Lee and Lemieux 2010)
we use some of the data collected by Caughey and Sekhon (2011) as controls.14

Specifically we use a dummy indicator for the party affiliation of the Secretary of
State (SoSDem), the margin of victory in presidential elections averaged over the
decade (DifPVDec), the percentage of government workers in a district (GovWkPct),
the percentage of population considered to be living in an urban setting (UrbanPct), the
percentage of Black voters in the district (BlackPct), and the percentage of population
which is foreign born (ForgnPct). Table4 outlines the descriptive statistics of the data.

Weobtain theweightmatrix by combining the abovedatawith latitude and longitude
fromhistorical congressional districtmaps (Lewis et al. 2013) using a queen contiguity
design. This is done for each congress separately and then the complete weight matrix
is of a block diagonal form. We chose this structure for its simplicity rather than
its strict validity. It is important to note that while U.S. House districts are adjusted
following the Decennial Census there is a great deal of correlation in the neighboring
districts across the election years. Many times a district will have the same neighbors
throughout the sample.15 A Moran’s I test, with a null hypothesis of no correlation,
produces a statistic of 51.9902 indicating substantial evidence against the null. This
is further buttressed by a naive look at model residuals using simple OLS and an
SDM model estimated using the maximum likelihood. Since a the OLS estimator
is a special case of the SDM where ρ and φ equals zero the residuals produced by
each model would be nearly identical in the absence of dependence. While highly
correlated, (0.865), the residuals differ enough to provide evidence of cross-sectional

13 It is important to note that while we have chosen to look at the effect of close Democrat wins we only
do this to link our analysis to the previous literature. The model looking at close Republican wins would
be a near mirror image of this model and provide qualitatively the same results.
14 We would like to thank the authors for making this data available through replication files hosted at
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/16357&version=1.0.
15 These adjustments are what led to Lee (2008) omitting the years ending in ’0’ and ’2’. We have found
however that inclusion of these years does not materially change the results and we can provide supple-
mentary tables upon request.
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dependence. This, combined with the results of the Moran’s I, indicate that a Durbin
model is likely a correct specification.16

Figures3a–f plots the outcome and running variable in a traditional RD type plot.
Along the left column we plot the raw data from the outcome (Fig. 3a), non-spatial
(Fig. 3c), and spatial residuals (Fig. 3e). The discontinuity is apparent both in Fig. 3a,
e though far less convincing in Fig. 3c. The plots themselves provide no informative
power regarding the significance (or lack thereof) of subsequent estimates but the
difference in plots is such that the jump is clearer. Along the right column we have
plotted the binned values over the running variable. The story repeats itself in these
plots with the outcome Fig. 3b, f displaying a clear jump at zero. Moreover, in all three
cases the area around the cutoff looks decidedly linear despite the non-linearity of the
full sample.

As a reminder, while the original study by Lee (2008) was completed using a fourth
order polynomial in the margin of victory, our pseudo-replication will be limited to
a local linear specification. Our decision is supported by recent literature which casts
doubt on higher order polynomial use in the RD setting (Gelman and Imbens 2018) as
well as graphic evidence from Fig. 3a–f. Table5 provides the results of our proposed
specification and a comparative set of specifications.17 For all results, the dependent
variable is the residualized, rather than raw, outcome so as to keep the results as
consistent as possible for comparison. The conventional estimates, those in the top
block, are consistent with those found in Lee (2008) where winning a close election
in time t provides a roughly 7.5% boost to votge share in time t + 1.18

While the point estimates in the first block of Table5 are similar, the standard errors
(or standard deviation in the case of CG) vary significantly and produce different con-
fidence intervals. The widest of intervals in this block are produced by Calonico et al.
(2014) methods, which are consistent with previously published results. The second
through fourth blocks of this table outline the empirical results using the proposed
specification with variation in how the bandwidth is calculated. In our simulations
we used the method of bandwidth calculation put forth by Imbens and Kalyanaraman
(2012) primarily for its computational efficiency. In this particular example the choice
of bandwidth under the proposed method is irrelevant as all three options produce
nearly identical results both in point estimates and standard deviation. Results from
the original study (Lee 2008) show between a 7.7% and 8.1% average effect while
Caughey and Sekhon (2011) shows approximately 9% using a similar specification.
While the results of the proposed method are similar with respect to th parameter
estimate it is important to note that the most direct comparison is the parameter esti-
mate of the non-spatial specifications to the direct effects from the spatial models.

16 It is important to note that the SDM nests both the Spatial Autoregressive (SAR) model and OLS as a
special case. Using the log-marginal likelihood we can calculate the model probabilities as in LeSage and
Pace (2009).Comparing theSDM,SAR, and spatial errormodels (SEM)using a thefirst stage residualization
clearly indicates the SDM as the preferred option.
17 Conventional Imbens and Kalyanaraman (2012) was estimated using functions written by the authors
in Matlab while both Calonico et al. (2014) estimates and the Chib and Greenberg (2014) estimates were
produced using their respective packages in R.
18 Interestingly Caughey and Sekhon (2011) find close to a 9.25% increase using the same data however,
that was on the raw rather than residualized outcome. The conventional estimates we obtain using the raw
outcome variable are quantitatively similar to this value.
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Fig. 3 a Here the raw data is plotted to show a clear discontinuity at zero without binning the data. Vote
share in time period t + 1 is on the Y -axis with the plus (red) icons referring to Republican vote share and
dot (blue) referring to Democrat vote share. b Here the data is binned in a more traditional RD plot to show
a clear discontinuity at zero. Note that we have sized the points relative to the number of observations in the
bin. c Here the residualized outcome (using OLS) is plotted to show a clear discontinuity at zero without
binning the data. Vote share in time period t + 1 is on the Y -axis with the plus (red) icons referring to
Republican vote share and dot (blue) referring to Democrat vote share. d Here the residualized outcome
(using OLS) is binned in a more traditional RD plot to show a clear discontinuity at zero. Note that we
have sized the points relative to the number of observations in the bin. e Here the residualized outcome
(at the conditional mean for all posterior parameter estimates using an SDM) is plotted to show a clear
discontinuity at zero without binning the data. Vote share in time period t + 1 is on the Y -axis with the
plus (red) icons referring to Republican vote share and dot (blue) referring to Democrat vote share. f Here
the residualized outcome (at the conditional mean for all posterior parameter estimates using an SDM) is
binned in a more traditional RD plot to show a clear discontinuity around zero. Note that we have sized the
points relative to the number of observations in the bin

With this in mind we see that the estimated direct effect, 9.2% is larger than any of
the non-spatial specifications. This is consistent with the simulations provided earlier
given the estimated ρ ≈ 0.4.
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Table 5 Effect of close house elections in %: residualized outcome (DPctNxt)

Method Mean SE/SD L95 U95 LBW RBW

IK 7.873 1.090 5.736 10.010 29.920 29.920

CCTc 7.402 1.757 3.958 10.847 18.962 18.962

CCTr 7.177 2.112 3.038 11.317 18.962 18.962

CG 7.857 1.426 5.083 10.634

Proposed (IK) 8.916 1.416 6.169 11.717 26.525 26.525

ρ 0.405 0.014 0.378 0.431

Total 14.985 2.379 10.368 19.693

Direct 9.220 1.464 6.380 12.117

Indirect 5.765 0.915 3.989 7.576

Proposed (CCT) 9.109 1.383 6.398 11.824 18.276 18.276

ρ 0.403 0.014 0.375 0.430

Total 15.413 2.341 10.826 20.006

Direct 9.427 1.432 6.622 12.370

Indirect 5.985 0.909 4.204 7.769

Proposed (AI) 9.088 1.322 6.437 11.671 18.436 32.048

ρ 0.403 0.014 0.377 0.430

Total 14.826 2.157 10.501 19.039

Direct 9.368 1.363 6.635 12.030

Indirect 5.458 0.794 3.866 7.009

Estimates with the raw outcome variable are available upon request. While the specification here for the
proposed method does not include temporal fixed effects the addition of them does not change the estimates
in a significant fashion. These results are also available upon request. In all of the specifications there is
no clustering of standard errors or standard deviations, and all information included in the residualization
process is kept consistent across the specifications. For the proposed estimation procedure an average
of 3472 (63.26) observations were used to calculate the treatment parameter when IK bandwidths were
employed. For the proposed method using CCT and AI bandwidths this number if 2436 (10.76) and 3250
(264.27) respectively. As a reminder the full sample size is 7949

Results using the proposed method indicate that the total effect of winning a close
election in district A, in time period t , is a approximately a 14.6% increase inDemocrat
vote share in time t+1. The direct effect of the treatment on the treated is approximately
9.2% with the remaining effects stemming from averaging the cumulated effects of
neighbor spillovers. One possible explanation for such an increase is that, given a close
win, the resource in subsequent campaigns can be shifted away from that district to
neighboring districts due to the anticipated incumbency advantage.

In this section we have shown that elections in the U.S. House of Representatives
from 1946 to 1996 do exhibit spatial dependence. We then compared the local-linear
estimations for the treatment effect put forth by Imbens and Kalyanaraman (2012);
Calonico et al. (2014); Arai and Ichimura (2018) to those of the proposedmethods.We
find significant andmaterial indirect effects from close (Democrat) winswhich support
geographic clustering by voters. We vary the bandwidth calculation in our proposed
method and show that the standard deviation of the marginal posterior distribution
for the treatment has less variation than the frequentist standard errors. This leads to
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interval estimates which are roughly equivalent across each of the three alternatives
and is informative in the sense that additional data admitted through awider bandwidth
are not materially impacting the results.

5 Conclusion

Regression discontinuity design has become a favored technique for identifying a
causal relationship from secondary data. As these types of data continue to evolve and
include measures of both space and network position it is important to consider how
these cross-sectional interactions interact with the RD structure. In this paper we have
outlined one method for estimating, in an RD framework, the effect of cross-sectional
dependence on treatment. Failure to account for this dependence produces estimates
of treatment which are potentially both biased and inefficient.We use a combination of
residualization, metropolis-hastings guided marginalization, and Bayesian sampling
methods to filter out the cross-sectional dependence and get a clean look at the local
average treatment effect through a local-linear specification.

We provide simulated evidence that the omission of cross-sectional interactions
from the standard RD framework can lead to inferential problems associated with
the aforementioned bias and inefficiencies. Moreover, we showed that in the special
case of ρ = 0, that is a standard RD model, the proposed estimation method produces
estimates with slightly lower bias andmean-squared-error than existing methods. This
improvement comes from the incorporation of uncertainty both from the observations
admitted to the estimation of treatment and the residualization parameters.We finished
by demonstrating the proposed estimation method using the common RD example of
close elections in the U.S. House of Representatives. We showed that the direct effect
of the treatment on the treated is ≈ 9% while the average indirect effect from the
treatment is ≈ 6%. While the mechanisms which cause these indirect effects are not
outlined in the data, one such avenue is a deployment of ground resources around a
closely won district rather than within it in anticipation of the incumbency effect.
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