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A B S T R A C T

In this paper a mixture distribution model is extended to include spatial dependence of the autoregressive type.
The resulting model nests both spatial heterogeneity and spatial dependence as special cases. A data generation
process is outlined that incorporates both a finite mixture of normal distributions and spatial dependence.
Whether group assignment is completely random by nature or displays some locational “pattern”, the proposed
spatial-mix estimation procedure is always able to recover the true parameters. As an illustration, a basic
hedonic price model is investigated that includes sub-groups of data with heterogeneous coefficients in addition
to spatially clustered elements.

1. Introduction

Spatial models have long sought to control for two distinct aspects
of the spatial paradigm, dependence and heterogeneity. Often the
econometric tools are readily available to test and control for spatial
dependence though heterogeneity has proved to be more challenging.
Of the two, heterogeneity generally has a broader definition pertaining
to varying structural parameters. Structural instability stemming from
a spatial process is commonly designated as spatial heterogeneity and
in order to obtain unbiased coefficient estimates it is necessary not only
be aware of but also control for heterogeneity (Chamberlain, 1982).
One proposal made to deal with this phenomenon is organizing the
observations into well-delineated, often small clusters. If, in such a
structure, the intercept is allowed to vary it can be noted that a form of
spatial fixed effects has been implemented. It has been shown however
that spatial fixed effects may in fact be spurious and not sufficient to
correct for bias in the face of spatial dependence (Anselin and Arribas-
Bel, 2013). In addition to fixed effects models, other solutions have
been proposed including switching regression, random coefficient
models, heteroskedasticity, amongst others. One alternative approach
to modeling heterogeneity, often overlooked in the spatial context, is
that of finite mixture models.

The continued increase in computational power over the last two
decades has made mixture models a functional and efficient way to
examine data with complex forms. Mixture models use discrete, latent
variables as indicators which govern sub-groups of a population. A
mixture of distributions is malleable enough to approximate most
distributional forms and since the distributions in question are of
known form this semi-parametric modeling technique is a viable

alternative to other non-parametric methods. This approach emerged
in economics via switching regression models (Quandt, 1972; Quandt
and Ramsey, 1978) and has seen significant empirical use across many
areas such as medical studies (Duan et al., 2007; Kottas et al., 2008),
marketing (Allenby et al., 1998), finance (Kalli et al., 2013), manage-
ment (Gabriel et al., 2014), and economics (Chotikapanich et al.,
2007).

Mixtures of distributions appear when samples are drawn from a
population comprised of several sub-groups, each of which is homo-
geneous within the sub-group population but heterogeneous between.
The construction and inference in a Bayesian context is well-docu-
mented (see Escobar and West, 1995 and Frühwirth-Schnatter, 2006)
though space is not typically seen as a confounder in such cases. These
models are quite flexible and have the ability to adequately model data
that otherwise would need to be examined non-parametrically (i.e.
heavier-tailed and/or highly skewed data).

The general base of econometric literature pays little attention to
the location of these subgroups and the potential impact on the
relationships of interest. Gelfand et al. (2005) and Duan et al. (2007)
introduce, in various forms, the Generalized Spatial Dirichlet Process
model (GSDP) which accounts for dependency across space as a
potential confounder with respect to medical research. A stick-breaking
method is employed to determine the number of component distribu-
tions which are homogeneous via a base distribution (typically normal).
This structure is employed again in Ji et al. (2009) though in all three
cases the inference in an economic context is limited due to base level
assumptions regarding the structure and impact of the spatial depen-
dency.

Spatial dependency, as outlined by the aforementioned works, is a
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latent process which is decomposed from the error term and exogenous
to the overall data generation process (DGP). Furthermore, it is
assumed that the distance between two observations is inversely
related to the probability they are from the same distribution. Based
on this assumption it is likely that individuals of a particular sub-group
will tend to cluster across space. The implication being that group
assignment is a deterministic function of location. Using this structure,
the probability that the ith observation belongs to the gth sub-group is
inferred from the posterior distribution rather than directly calculated
(Duan et al., 2007).

Econometric applications of spatial dependency are noticeably
different from the application mentioned above. The process is still
exogenous to the model, however, in the case of a Spatial
Autoregressive model (SAR), the dependency is observed via a filtered
dependent variable. The focus has shifted in this context from decom-
posing the error term to understanding how the outcomes of individual
agents spill over to their neighbors. The neighbor structure is imposed
via a row-stochastic matrix rather than a direct measure of distance.
This spatial weight matrix, W, allows for greater discretion on the part
of a researcher in determining the relationships of interest and allows
for a more fungible definition of space. More importantly, it allows for
the calculation of partial derivatives to show how a change in the
dependent variable is related to a change in explanatory variables
coming from both one's own location and that of their neighbors. These
effects, according to LeSage and Pace (2009), are labeled as direct and
indirect effects.

This paper proposes a spatial mixture model which relaxes the
assumptions made in the GSDP. The spatial autoregressive mixture
model (hereafter referred to as ‘SAR-M model’) explicitly assigns a
form to each of the component distributions and is not confined to the
base distribution structure employed in the GSDP.1 Following Aquaro
et al. (2015) and LeSage and Chih (2016), a heterogeneous coefficient
spatial autoregressive model is developed to allow for variation in the
level of spatial dependence. However, the level of interaction between
observations stays homogeneous within each group. Spillover effects
from neighboring locations belonging to different groups will exert
different impacts. To illustrate the flexibility of having heterogeneous
spatial dependence in a cross sectional environment, a DGP is outlined
which allows for neighbors to be of differing sub-groups within the
mixture. Furthermore, a data augmentation step is employed to
directly calculate the observation specific group probabilities. It will
be shown that the SAR-M model provides unbiased estimates as
opposed to its OLS counterpart and the SAR specification with no
mixtures. Finally, unlike the GSDP the proposed model requires an
explicit specification regarding the number of component distributions
in the mixture.

The remainder of this paper will be organized as follows. Section 2
will outline the data generation process combining the mixture and
spatial structures. Section 3 outlines the estimation method including
prior structure, full joint posterior, and conditional parameter dis-
tributions. A sampling algorithm will be included in this section as well.
Section 4 provides simulation parameters and Monte Carlo simulation
results using the SAR-M model. Section 5 covers an empirical applica-
tion in the form of hedonic pricing models. Section 6 summarizes the
findings and offers avenues for additional research.

2. The spatial-mix model

The SAR specification relies on spillover effects between agents.
Informally it can be stated that the outcomes of an agent rely not only
on the attributes and decision of that particular agent, but also the
outcomes of neighboring agents. There are a number of theoretical

motivations for the observed correlation between nearby observations
(see LeSage and Pace, 2009 for a full discussion). The DGP for this
model is typically expressed in the form

y ρWy xβ N σ I= + + ϵ, ϵ~ (0, )N
2 (1)

where y denotes the N-dimensional vector of the observed dependent
variable, x denotes the N×K matrix of exogenous explanatory variables,
and β is the associated K-dimensional vector of parameters of interest.
The N × 1 vector of disturbance terms ϵ is assumed to be independently
and identically distributed (i.i.d.) following a Normal distribution with
variance σ IN

2 . The N×N weight matrix, W, specifies the connectivity
structure between observations. Each elementwij will be different from
zero if agents i and j are neighbors. This structure is exogenously
defined by the researcher and can take a number of forms often
resulting in a row-stochastic matrix. The value ρ is a scalar value that
indicates the magnitude and direction of the spatial effect in the
process. Since this weight matrix is row-normalized the value of ρ is
bounded between γ(1/ , 1)min , where γmin is the minimum eigenvalues of
W.

It should be apparent that, in the absence of spatial dependence, the
condition ρ = 0 will collapse (1) to the standard OLS process. If ρ ≠ 0
then OLS is biased and inconsistent (see LeSage and Pace, 2009 for a
full discussion). Recognize that this functional form is the most basic of
spatial structures and little empirical work is conducted with such a
structure.

Spatial dependence relies mainly on the assumption that clusters of
individuals should, in principle, be based on geographical proximity.
One aspect often overlooked is the considerable heterogeneity of
behavior across individuals regardless of proximity. Spatial hetero-
geneity generally pertains to varying structural parameters over space.
However, delineation over a well-defined group is often hard to assess.
As detailed in Anselin and Arribas-Bel (2013), incorrect delineation
might exacerbate spatially correlated and heteroskedastic error terms
and create additional model misspecification. To account for unob-
served heterogeneity, the observations are assumed to be drawn not
from a single distribution but from a finite mixture of distributions. The
introduction of spatial dependence in mixture models relaxes the
assumption of an individual's distributional assignment being inde-
pendent. In fact, the spatial proximity will generate correlation across
individuals even if they happen to be of differing distributional
assignment.

To relax the assumption of homogeneous spatial lag coefficients,
Aquaro et al. (2015) and Lesage and Chih (2016) allow for hetero-
geneous coefficients for each spatial unit in a panel data setting.The
proposed spatial mixture model assumes that spatial lag coefficients
are only differentiated according to the group they belong to.
Furthermore, while the above works are able to capture individual
level effects (both spatial dependence and coefficients) it is only
relevant in a panel data setting while the proposed model is cross-
sectional in nature. Their work is, in the abstract, a corner case of that
presented here such that N=G.

Data resulting from a mixture of distributions has a starkly different
form than that of the spatial case and can be written in a number of
ways. For the purposes of this discussion a general mixture DGP is used
which allows for heterogeneous coefficients and variances across the
sub-groups. As indicated previously a different functional form can be
chosen for each of the components if necessary though that process will
not be explicitly examined here. In practice, many distributional forms
can be estimated strictly using a mixture of Gaussian distributions.

As described in Dempster et al. (1977), mixture models are often
expressed as an incomplete data problem, where the missing data are
represented by categorical latent variables indicating which mixture
component generated each observation. To properly model mixtures of
distributions, the following assumptions are needed:

Assumption 1. Each observation yi, i N( = 1, …, ) belongs to one of

1 For expositional purposes all distributions in this paper are assumed to be normal
though this is not a requirement.
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g=1,…,G distinct groups. The number of groups, G, is known though an
individual agent's group membership is not observed.

Assumption 2. The collection of observations which are assigned to
each of the G groups are independent and identically distributed (i.i.d.)
following a mixture of normal distributions.

Assumption 3. Each group is independent of the remaining groups
such that the G G× variance-covariance matrix
Σ diag σ σ σ= ( , , …, )G1

2
2
2 2 .

Assumption 4. For each latent component indicator, z = 1ig if the ith
observation is drawn from the gth component of the distribution and
z = 0ig otherwise. Thus, each vector of component indicator
z z z= ( , …, )i i iG1 is distributed according to a multinomial distribution
consisting of one draw on G categories with probability π π π= ( , …, )g1 .

Assumptions 1 to 3 allow for the observations y y( , …, )n1 to form a
sample from the following finite mixture of G Gaussian distributions:

∑ ∑p y x β Σ π π N y x β σ π( | , , , ) = ( | , ), = 1∼
i i

g

G

g i i g g
g

G

g
=1

2

=1 (2)

where xi is a K1 × vector of explanatory variables, β β β= ( , …, )′g g gK1 is
a K × 1 vector of coefficients specific to group g, and β β β= ( ′ , …, ′ )′G1
is a KG × 1 vector of parameters of interest for all groups. The set of
probabilities, π π π= ( , …, )G1 represents the mixture proportions such

that π0 ≤ ≤ 1g , and π∑ = 1g
G

g=1 . The non-spatial G-components uni-

variate normal mixture distribution is obtained by setting y y=∼
i i and

Assumption 3 guarantees that all observations are independent but
have the same variance if they belong to the same group.

According to Assumption 1 the number of components, G, is to be
fixed. For the purposes of this paper traditional model selection criteria
(AIC, BIC, DIC, etc.) along with diagnostic plots are employed to
determine the optimal number of components present in the mixture.
If G is considered to be unknown and estimated as a parameter, a
Dirichlet process can be implemented (see Gelfand et al., 2005 for such
an example).

Being able to identify the component from which each observation,
yi, is generated requires a component-label indicator. To that end,
Assumption 4 introduces a stochastic indicator, the role of which is to
identify which group has generated each observation i=1,…,N. Let
z z z= ( , …, )i i iG1 and z z z= ( ′ , …, ′ )′N1 be the N G× latent component
indicator which identifies each observation i to a group g. Each vector
of latent component zi is conditionally independent distributed accord-
ing to a Multinomial distribution with probability π.

The most common result of such a process is data which exhibits
abnormalities in shape such as multiple modes and/or large tails. The
number of identifiable modes should not be considered as strong
evidence relevant to the size of G, that is a process with two modes
could have two or more (less) component mixtures. One could consider
abnormalities in the distribution to be weak evidence that a mixture
model is an appropriate specification.

To extend the model outlined in (2) and incorporate the spatial
dependence as described in (1), the parameters measuring the strength
of spatial dependence are defined as ψ ρ ρ= ( , …, )G1 for each group
g=1,…,G. In order to appropriately identify the observation with the
appropriate group and spatial lag parameters, let ψ zψ= ′∼ , where ψ∼ is
an N-dimensional vector such that ψ ρ=∼

i g if the observation i belongs to
group g.

For the spatial autoregressive specification, it is assumed that
y y ψ w y= − ∑∼ ∼
i i i j δ ij j∈ i

, where δi is defined to be the set of neighbors for
agent i based on geographical proximity. Given the spatial weight
matrix is row-normalized, ψ w y∑∼

i j δ ij j∈ i
represents the weighted average

effect over the neighboring values of yi. Note that, under this structure
and set of assumptions, neighboring observations can identify with a
different mixture component, g. The set of agents which belong to the
mixture component g is defined as I i z= { , = 1}g ig and it is assumed
that each g is independent with distinct mean, x βi g and variance, σ2g.

Assumption 5. In case of spatial dependence, Assumptions 2 and 3
hold only for y∼i .

Given Assumptions 1 and 3 from the non-spatial case, it is easy to
see that each observation yi is no longer i.i.d. with the introduction of
spatial dependence. Assumption 5 ensures that by setting
y I Ψ W y= ( − )͠∼ , cov y y( , ) = 0∼ ∼

i j for any i j≠ .
Given the latent component indicator, the joint density of the data

has the following representation

⎡

⎣
⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥⎥

⎫
⎬⎪
⎭⎪

∏

∑ ∑

p y x z ψ β Σ π I Ψ W πσ

σ
y ψ w y x β

( | , , , , , ) = | − | {(2 )

× exp − 1
2

− − ,

͠

∼

N
g

G

g
N

g i I
i i

j δ
ij j i g

−1

=1

2 /2

2
∈ ∈

2

g

g i (3)

where x x x= ( ′ , …, ′ )′N1 is a N×K matrix of explanatory variables,
β β β= ( ′ , …, ′ )′G1 is a KG × 1 vector of parameters of interest, and
Ψ diag ψ= ( )͠ ∼ is an N×N diagonal matrix for which each diagonal
element ψ ρ=∼

i g if the observation i belongs to group g and

N z= ∑g i I ig∈ g
represents the number of agents in each group g. As

details in the next section, the latent component indicators z are
independent multinomial and by including them with the observed
dependent variable, the augmented model for (y,z) has the following
full joint density

∏ ∏

p y z x β Σ ψ π p y z x β Σ ψ π p z x β Σ ψ π

N y x β σ π

( , | , , , , ) = ( | , , , , , ) ( | , , , , )

= ( | , )∼
g

G

i I
i i g g g

N

=1 ∈

2

g

g

(4)

Recognize that, as mentioned earlier, β β β= ( , …, )′g g gK1 is a K × 1 vector
of parameters specific to the gth group. Finally, note that marginalizing
out the conditional likelihood defined in (3) over z will leave us with the
spatial G- mixture model described at this outset of this section.

3. Estimation method

The likelihood function for models with mixture of normals poses
highly complex computational challenges for any estimation procedure
based on maximization (e.g. maximum likelihood). Within the para-
metric family and non-parametric settings, numerous approaches have
been proposed to what constitutes a fascinating illustration of malle-
able approximations for this likelihood function (see Frühwirth-
Schnatter, 2006 for a complete review). A flexible, parametric
Bayesian framework is presented in this section following the seminal
work of Escobar and West (1995).

In the case of analytically tractable distributions, as shown here, a
modified Gibbs sampler can be employed to sample from the pertinent
conditional distributions and standard inference as outlined by Escobar
and West (1995) follows. An extension of the traditional Gibbs sampler
proposed by LeSage and Pace (2009) is developed in this section. A
Metropolis Hastings step is added for the spatial lag parameter by
implementing a normal candidate distribution along with a tuned
random-walk procedure. It is also possible, and perhaps slightly more
efficient, to draw by inversion using a “griddy Gibbs” step as outlined
by LeSage and Pace (2009).

Earlier it was assumed that the groups are i.i.d. and this is shown by
establishing Σ to be the diagonal of the group variance-covariance
matrix. This is convenient in that it allows for the model to collapse to a
univariate draw mechanism within the sampler. The likelihood func-
tion represented in the posterior is given by (3) and priors are
established for other parameters ψ Σ β π z( , , , , ). It will be shown that,
due to Assumption 4, it is possible to draw from a univariate
distribution for y I Ψ W y= ( − )∼ ͠

N rather than the more typical multi-
variate normal distribution for y. Drawing from the univariate case is
merely done for convenience and computational efficiency.
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A Normal-Inverted Gamma structure is used for the distributions of
β and Σ respectively which implies the same structure will be seen in
the posterior distribution. These priors are diffuse but proper as
outlined by Geweke (2007) leading to posterior distributions which
are also proper. A multinomial prior is established for the distribution
of z and this can also be left uninformative with starting values equal to
a uniform weight structure. A Dirichlet prior is used for the distribution
of π, again a relatively uninformative approach can be taken. Different
possibilities exist for the prior structure of ψ ρ ρ= ( , …, )G1 (see LeSage
and Pace, 2009) though for the purposes of this paper the prior is
assumed to follow a Beta distribution that takes the form of a relatively
uniform distribution centered on a mean value of zero.

p z π M π( | ) ∼ (1, )i (5)

p π D α α( ) ∼ ( , …, )G1 (6)

p β N β V( ) ∼ ( , )g g β0 g (7)

p σ IG a b( ) ∼ ( , )g g g
2

(8)

p ρ Beta d d( ) ∼ ( , )g 0 0 (9)

Using this prior structure and the likelihood function defined by (3)
the posterior is of the form:

p β Σ ψ x y z p y x β Σ ψ z p z π p β p Σ p ψ p π( , , | , , ) ∝ ( | , , , , ) ( | ) ( ) ( ) ( ) ( ) (10)

Given the latent indicator variable z, the data are classified for each
iteration into G groups such that x x= { }g i i I∈ g

and y y= { }∼ ∼
g i i I∈ g

.

Conditional on y∼, the posterior distributions will be independent
across groups, as are their priors. As a result the sampler decouples
into a set of G conditionally independent normal random samples. For
each mixture component, g, the conditional distribution of βg can be
written as:

p β σ ρ x y z N D d D( | , , , , ) ∼ ( , )g g g β β β
2

g g g (11)

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥D

σ
x x V= 1 ′ +β

g
g g β2

−1
−1

g g
(12)

d
σ

x y V β= 1 ′ +∼
β

g
g g β g2

−1
0g

(13)

y I Ψ W y= ( − )∼ ͠
N (14)

Turning to the estimation of the variance matrix
Σ σ σ σ= diag( , , …, )G1

2
2
2 2 , each element σ2g has a conjugate inverted

Gamma prior IG a b( , )g g and the posterior density of p σ β ρ x y z( | , , , , )g g g
2

is generated from the following Inverted Gamma distribution,

p σ β ρ x y z IG c C( | , , , , ) ∼ ( , )g g g g g
2

(15)

where

C a
N

= +
2g g

g

(16)

c b= + 1
2

ϵ′ ϵg g g g (17)

where y x βϵ = −∼
g g g g.

The strength of spatial dependence ψ ρ ρ= ( , …, )G1 is estimated
from the posterior distribution (18). Because it is not reducible to a
standard distribution, the aforementioned Metropolis-Hastings step is
incorporated into the MCMC sampling procedures. This step relies on a
random walk proposal with normally distributed increments for each
ρg, g G= 1…, , such that ρ ρ η N= + (0, 1)g

new
g
old

g (see LeSage and Pace,
2009). The acceptance probability is calculated as the ratio of (18)
evaluated at the old and new candidate draws. For each group g, the

proposal tuning parameter ηg is systematically incremented or decre-
mented when the acceptance rate moves below 0.40 or above 0.60,
which results in an acceptance rate close to 0.50 after a burn-in period.

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
⎫
⎬
⎭

∏p ρ ρ Σ β x y z I Ψ W π σ
σ

p ρ( | , , , , , ) = | − |(2 ) ( ) exp − 1
2

ϵ′ ϵ ( ),͠
g g N

Ng

g

G

g
Ng

g
g g g−

− /2

=1

2 − /2
2

(18)

where p ρ( )g is the Beta prior distribution.2

While z is a latent indicator, a step must be undertaken to calculate
the probability that each observation belongs in every group. Since the
dependent variable y is spatially correlated, the variance-covariance
matrix is equivalent to Var y I Ψ W zΣz I Ψ W( ) = ( − ) ( ′)( − ) ′͠ ͠

N N
−1 −1 . The

simulation from a multivariate normal density is more complex and
time consuming but not impractical. As previously explained, by
leveraging the assumption of group independence it is possible to
avoid drawing from the multivariate distribution and draw as though it
were a non-spatial environment. As defined in (2), the spatial filter y∼i
for each observation i is independent from any other observation.
Therefore, for each observation, i, and a given group, g, the spatial filter
is equivalent to y y ρ w y= − ∑∼

i i g j δ ij j∈ i
, and the latent variable zig has the

following conditional sample classification probability ωig:

ω Pr z y x β Σ ψ π N y x β σ≡ ( = 1| , , , , ) ∝ ( | , )∼
ig ig g i i g g

2
(19)

The N×G matrix ω is calculated by augmenting the model with
predicted values of y∼ for each group g independently. For each group g
and observation i, the predictive classification for each element y∼ is
based on the following density

⎡

⎣
⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥⎥

∑q π πσ
σ

y ρ w y x β= (2 ) exp − 1
2

− − ,ig g g
g

i g
j δ

ij j i g
2 −1/2

2
∈

2

i (20)

and is normalized in order to get the set of classification probabilities:

ω
q

q
=

∑
.ig

ig

g
G

ig=1 (21)

The N×G matrix of new component indicator z z z= ( ′ , …, ′ )′N1 is
obtained such that each G-dimensional row vector zi is generated from
an independent multinomial distribution:

p z y x β Σ ψ Mn ω ω ω( | , , , , )~ (1, [ … ]).i i i iG1 2 (22)

This holds only under the assumption that the groups themselves
are independent of one another, as outlined in Assumption 4. Finally,
the posterior distribution for the G-dimensional vector of probability π
follows a Dirichlet distribution p π Σ β ψ x y z D α N( | , , , , , ) ∼ ( + ), where
α α α= ( , …, )G1 and N N N= ( , …, )G1 .

It is apparent that if ψ = 0 then the spatial-mix DGP collapses to
that of the mixture model outlined by (2). If z is an N( × 1) vector and
ψ ρ ρ= ( , …, ) such that ρ ρ ρ ρ= = = ⋯ = g1 2 then this structure col-
lapses to the standard SAR form outlined in (1). Finally, if both of these
conditions are true then the DGP collapses to the standard OLS
framework. This is a flexible and general framework which nests the
OLS, mixture, and SAR models as special cases and places no
assumptions upon the geographical dispersion of the observations.

The full, modified Gibbs Sampler is as follows:

1. Classify xg and y∼g into G groups

2. Draw from p β σ ρ x y z N D d D( | , , , , ) ∼ ( , )g g g β β β
2

g g g

3. Draw from p σ β ρ x y z IG c C( | , , , , ) ∼ ( , )g g g g g
2

4. Draw from
⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥
⎫
⎬⎪
⎭⎪

p ρ ρ σ β x y z I ΨW π σ p ρ( | , , , , , ) = | − |(2 ) ∏ ( ) exp − ϵ′ ϵ ( )͠g g g g N
Ng g

G
g

Ng
σg

g g g−
2 − /2

=1
2 − /2 1

2 2

2 Note that ρg indicates the scalar level of spatial dependence for group g and that ρ g−
is designated as the scalar for each other group which is not g.
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5. Draw from p z y x β Σ ψ Mn ω ω ω( | , , , , ) ∼ (1, [ … ])i i i iG1 2
6. Draw from p π Σ β ψ x y z D α N( | , , , , , ) ∼ ( + )
7. Return to 1 and iterate.

4. Monte Carlo simulations

To better understand the spatial mix DGP it has been rewritten
below in reduced form. Sizing vectors ιK and ιG are defined to be
vectors of ones with size K × 1 and G × 1 respectively. Again, W is
considered to be an exogenous, row-stochastic matrix indicating the
connectivity structure of each observation and Ψ͠ is the N×N diagonal
matrix described in (3). Using these definitions the DGP can be written
in the reduced form

y I Ψ W X β I Ψ W= ( − ) + ( − ) ϵ∼͠͠ ͠
N N

−1 −1 (23)

Where,

X ι x z ι= ( ′ ⊗ ) ⊙ ( ⊗ ′ )͠
G K (24)

Ψ zψ= diag( ′)͠ (25)

zΣϵ = ( ) ⊙ ϵ∼ ∼1/2
(26)

Nϵ ∼ (0, 1),

where Σ∼ the G × 1 vector of diagonal elements from Σ, ⊗ is the
Kronecker product, and ⊙ is the Hadamard product. The expanded
N×KG matrix X͠ of explanatory variables will be revisited after each
interaction in the modified Gibbs sampler and because of this it is
important to have a clear understanding of the mechanics involved.
Consider the example of x which is a 5×2 defined below, with sample
size N=5, the number of explanatory variables K=2 and the number of
mixtures G=3. Conditional on the indicator matrix z, X͠ is defined as:

x z X=

5 2
3 4
0 1
4 5
1 1

, =

0 1 0
1 0 0
0 0 1
0 1 0
0 0 1

, =

0 0 5 2 0 0
3 4 0 0 0 0
0 0 0 0 0 1
0 0 4 5 0 0
0 0 0 0 1 1

͠

Note that the end result for X͠ will be an N KG× group ordered
matrix which, when multiplied by the vector β - of size KG × 1 -
produces the appropriate group effect on the outcome variable in
question. A similar group ordered matrix for the variance is produced
by (26). Furthermore, this structure allows for estimation of Ψ͠ by
allowing only the group specific scalar value on W to affect each agent
within that group. To avoid label degeneracy, which is a trivial
identification issue, the component weight vector is sorted in descending
fashion upon completion of the estimation algorithm. Since the state
labels typically lack any substantive interpretation and are merely used
as a record keeping mechanism tracking the distribution, the posterior is
permutation-invariant and priors must be proper (Geweke, 2007).

To test the efficacy of this modeling technique several different
simulation environments were created in addition to a simple empirical
application.

4.1. Signal to noise and simulation information

Following the advice and notation of Pace et al. (2011), special
attention is paid to the signal-to-noise ratio r( )2 throughout the Monte
Carlo simulations.3 This section will outline simulation results in which
the r2 varies from high signal r( ≈ 0.86)2 , medium-high signal
r( ≈ 0.62)2 , medium-low signal r( ≈ 0.34)2 , and low signal r( ≈ 0.17)2 .
The calculation for this ratio can be found in (27) and the average value
over the simulations will be reported in each table. Each simulation
consists of 100 iterations through the DGP and modeling process with

5000 iterations through the sampler and a burn-in of 2000.

r
σ I Ψ W

β X I Ψ W X β σ I Ψ W
= 1 −

tr(( − ) )
′ ′( − ) + tr(( − ) )͠ ͠

͠
͠ ͠

N

N N

2 ϵ
2 −2

−2
ϵ
2 −2 (27)

The parameters for β are fixed over each simulation while the
variance, σϵ

2, is varied in order to obtain the desired level of signal.
Sample size will be kept constant across the simulations and is reflective
of a large sample where N=2000, meaning computational time for each
model is approximately six minutes, the bulk of which is taken by
calculating the determinate I Ψ W| − |͠

N during the M-H step of the
sampler.4 Finally, the draws for X are independent and Normally
distributed with mean μ = 2X and variance σ = 2X

2 . It is important to
note that, unlike traditional Monte Carlo simulations in which X is drawn
from a distribution with mean zero, in order create some heterogeneity in
the outcome the mean of X must be non-zero. The simulation data was
created using Eq. (23) outlined earlier in this section.

The geographic location of each agent in the simulation is drawn
from a normal distribution for both latitude and longitude. Simulations
have been completed with varying degrees of spatial heterogeneity;
from the completely heterogeneous case (Fig. 1a) to the independent
locational structure (no heterogeneity). For brevity, the results pre-
sented here are restricted to a mixture of the two cases, half of the
agents are clustered in a spatial heterogeneity form while the other half
are permitted unrestricted locational options, see Fig. 1b. This struc-
ture is difficult in traditional modeling frameworks since delineation of
the clusters is nearly impossible as there is no clear, visible pattern for
which to draw the borders. Results are consistent throughout the
domain of geographic assignment; from the fully segregated to random
placement structures.

4.2. Homogenous spatial dependence

Before analyzing in detail the general spatial mixtures with hetero-
geneous spatial lag, particular attention is given to the importance of
bias and group misspecification when spatial dependence is omitted
from mixture models.5 Group assignments, while randomized for each
observation in the simulation, are kept constant in size across all
simulations with π = (0.45, 0.35, 0.20). In this particular case the DGP
is forced into a homogeneous spatial level of spatial dependence where
ψ ρ ρ ρ= ( , , ) = (.7, . 7, . 7)1 2 3 . For all simulations priors are kept rela-
tively uninformative and set to: β = 0g K0 , V I= 100β Kg

, ag=3, bg=0.5,

d0=1.01 α = 2g , for all g G= (1…, ). Note that an OLS mixture model
was also run on the simulated data in order to show that estimates are
biased in the face of spatial dependence (see LeSage and Pace, 2009).

It is apparent from results presented in Table 1 that the SAR-M
model provides estimates which are close to the true values and, as
expected, the OLS estimates tend to be biased and inefficient. For each
parameter the SAR-M model provides a distribution which is not only
unbiased but exhibits less variance than that of the OLS mixture. It also
can be seen that estimates of the variance present in the process are
greatly inflated in the OLS mixture case relative to the SAR-M results.
Finally, it is important to notice that the SAR-M model captures the
appropriate level of variation in the process as indicated by the r2 and
R2 values.

4.3. Simulation results

Results for the heterogenous spatial dependence mixture model are
provided in Table 2 and show that the true parameters are recovered
very well under high signal conditions. Not only are the posterior

3 Note that while r2 is used to denote the signal-to-noise ratio the notation R2 refers to
the traditional model based measure of captured variation.

4 A special thanks to Dr. R. Kelley Pace and Dr. James LeSage for advice on increasing
the computational efficiency for this process using a sparse incomplete LU factorization.

5 Note that only one simulation is presented for the homogeneous spatial dependence
case though the results are consistent across the domain of ρ.
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means reflective of the true value but the 95% credible interval suggests
each result is significantly different from zero and that the variation
around that mean is relatively low. The calculated R2 is close to the
established r2 indicating that the model is in fact capturing the vast
majority of the signal. It is important to note that the values for both R2

and r2 are the average across the simulations. Fig. 4 shows diagnostic
plots of the draws for each parameter with no evidence of label
switching or other convergence issues. OLS results are omitted but
suffer from the same bias as shown previously.

It should be noted that here the direct and indirect effects,
representing own-partial and cross-partial derivatives respectively
have been omitted from the table. This is a purposeful omission in
that these effects hold little meaning in a simulation environment
though later, in the empirical results, the scalar summaries for these
effects will be provided. Furthermore, while these values have been
calculated within the confines of the empirical example there is
significant discussion to be had regarding the interpretation of such
derivatives in the mixture model framework, discussion that will be
saved for a later date.

Referring back to Table 2 it is apparent that the homogeneous SAR
estimates are quite different from the true values (TV) and should be

seen as unreliable. The estimate for ψ in this model is quite a bit larger
than the weighted average of the scalar parameters in the hetero-
geneous model (.09). In addition, the estimates for β not only are
different from the group weighted average but are significantly
different from zero, supporting the assertion originally made by
Anselin and Arribas-Bel (2013) that spurious results are a common
result of model misspecification between spatial heterogeneity and
spatial dependence.

Tables 3–5 illustrate how the model performs as the noise is
increased in the DGP. Note that as the level of signal decreases the
estimates from the SAR-M model become more uncertain with larger
standard deviations and wider credible intervals until, in the lowest
signal case, the estimates are no longer statistically distinguishable
from zero. The SAR on the other hand, behaves consistently regardless
of the noise level. Standard deviations increase slightly for each
parameter as the level of noise increases though one would continue
to reject the null hypothesis of zero in each case. This is related to the
well-known problem of bias-variance trade-off. Using multiple mix-
tures fits the DGP accurately, at the cost of extra parameters. With
more noise, it is harder to estimate them precisely leading to higher
variance in the estimates.

Fig. 1. Panel (a) shows simulated data with deterministic location by group membership. Panel (b) shows simulated data where half of the observations are located in a deterministic
fashion and the remainder are randomly located.The structure from Panel (b) is revisited in simulated environments.

Table 1
Homogeneous spatial dependence estimation results ρ = .7.

Parameter True values SAR-M Std Dev L95⋆ U95⋆ OLS-M Std Dev L95⋆ U95⋆

β11 −0.5000 −0.5091 0.0174 −0.5435 −0.4756 −0.7650 0.0468 −0.8543 −0.6731
β12 −0.7500 −0.7506 0.0158 −0.7813 −0.7188 −1.0031 0.0473 −1.0966 −0.9074
β21 0.5000 0.5091 0.0175 0.4745 0.5423 0.6163 0.0754 0.4686 0.7661
β22 0.8000 0.8014 0.0200 0.7596 0.8406 0.9311 0.0798 0.7661 1.0846
β31 −1.0000 −0.9845 0.0253 −1.0327 −0.9313 −1.0580 0.1364 −1.3267 −0.7785
β32 1.2000 1.1580 0.0249 1.1072 1.2026 1.2773 0.1291 1.0166 1.5172
ρ 0.7000 0.7097 0.0084 0.6934 0.7259 – – – –

σ21 1.0000 1.0481 0.0999 0.8972 1.2838 6.5587 0.5700 5.5326 7.7521
σ22 0.7500 0.9236 0.1436 0.721 1.2845 8.2107 0.7772 6.7451 9.7651
σ23 0.5000 0.8295 0.2152 0.5338 1.3564 9.7612 1.3678 7.1569 12.5825
π1 0.4500 0.4512 0.0136 0.4241 0.4785 0.4456 0.0195 0.4074 0.4833
π2 0.3500 0.3491 0.0137 0.3223 0.3761 0.3443 0.0280 0.2905 0.3987
π3 0.2000 0.1997 0.0131 0.1737 0.2257 0.2102 0.0290 0.1538 0.2672
r2 0.9326
R2 0.9381 0.6904

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.
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Table 2
High signal simulations.

TV SAR-M Std Dev L95⋆ U95⋆ SAR Std Dev L95⋆ U95⋆

β11 −0.5000 −0.4992 0.0234 −0.5445 −0.4527 β1 −0.2597 0.0508 −0.3576 −0.1579
β12 −0.7500 −0.7516 0.0220 −0.7944 −0.7085 β2 0.2529 0.0710 0.1070 0.3880
β21 0.5000 0.4944 0.0235 0.4483 0.5399 – – – – –

β22 0.8000 0.7957 0.0244 0.7467 0.8422 – – – – –

β31 −1.0000 −0.9787 0.0314 −1.0373 −0.9133 – – – – –

β32 1.2000 1.1804 0.0320 1.1145 1.2400 – – – – –

σ21 1.0000 1.0576 0.1236 0.8650 1.3508 σ2 7.5598 0.4013 6.7954 8.3697
σ22 0.7500 0.8841 0.1593 0.6451 1.2685 – – – – –

σ22 0.5000 0.7767 0.1823 0.4931 1.2053 – – – – –

ρ1 −0.3000 −0.2767 0.0404 −0.3576 −0.1992 ρ 0.2986 0.0532 0.1930 0.4010
ρ2 0.3000 0.2996 0.0328 0.2350 0.3640 – – – – –

ρ3 0.6000 0.5902 0.0434 0.5046 0.6756 – – – – –

π1 0.4500 0.4346 0.0186 0.3980 0.4703 – – – – –

π2 0.3500 0.3511 0.0196 0.3140 0.3902 – – – – –

π3 0.2000 0.2143 0.0177 0.1797 0.2492 – – – – –

R2 0.8862 – – – – – – – – –

r2 – 0.8598 – – – – 0.0356 – – –

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.

Table 3
Simulations: medium-high signal.

TV SAR-M Std Dev L95⋆ U95⋆ SAR Std Dev L95⋆ U95⋆

β11 −0.5000 −0.4800 0.0690 −0.6222 −0.3508 β1 −0.2479 0.0529 −0.3482 −0.1402
β12 −0.7500 −0.7831 0.0675 −0.9121 −0.6439 β2 0.2672 0.0678 0.1326 0.4001
β21 0.5000 0.4836 0.0777 0.3295 0.6364 – – – – –

β22 0.8000 0.7708 0.0756 0.6173 0.9140 – – – – –

β31 −1.0000 −0.8905 0.0974 −1.0841 −0.7084 – – – – –

β32 1.2000 1.0342 0.1128 0.7942 1.2342 – – – – –

σ21 6.0000 5.8623 0.6426 4.7283 7.2407 σ2 10.2862 0.4072 9.5134 11.1418
σ22 4.5000 5.0891 0.7249 3.7642 6.6358 – – – – –

σ22 3.0000 4.6521 0.7322 3.3034 6.1890 – – – – –

ρ1 −0.3000 −0.2034 0.0863 −0.3748 −0.0227 ρ 0.2464 0.0330 0.1810 0.3100
ρ2 0.3000 0.3529 0.0642 0.2315 0.4753 – – – – –

ρ3 0.6000 0.6896 0.0866 0.5043 0.8483 – – – – –

π1 0.4500 0.3944 0.0274 0.3420 0.4493 – – – – –

π2 0.3500 0.3510 0.0326 0.2845 0.4120 – – – – –

π3 0.2000 0.2546 0.0359 0.1871 0.3270 – – – – –

R2 0.6699 – – – – – – – – –

r2 – 0.6177 – – – – 0.0257 – – –

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.

Table 4
Simulations: medium-low signal.

TV SAR-M Std Dev L95⋆ U95⋆ SAR Std Dev L95⋆ U95⋆

β11 −0.5000 −0.4304 0.2310 −0.7936 0.2805 β1 −0.2487 0.0610 −0.3653 −0.1257
β12 −0.7500 −0.6817 0.1963 −1.0490 −0.2929 β2 0.2343 0.0726 0.0874 0.3762
β21 0.5000 0.3585 0.2883 −0.5719 0.7602 – – – – –

β22 0.8000 0.6386 0.2683 −0.0608 1.0598 – – – – –

β31 −1.0000 −0.8659 0.1661 −1.1562 −0.5494 – – – – –

β32 1.2000 0.8543 0.2208 0.3973 1.2553 – – – – –

σ21 15.0000 15.1365 2.2533 11.3241 20.1626 σ2 14.5948 0.5877 13.5026 15.7993
σ22 12.0000 14.0234 2.0049 10.5601 18.3847 – – – – –

σ22 9.0000 12.9411 1.8492 9.7528 16.9530 – – – – –

ρ1 −0.3000 −0.2299 0.1537 −0.5454 0.0520 ρ 0.2715 0.0331 0.2080 0.3350
ρ2 0.3000 0.3786 0.1099 0.1259 0.5729 – – – – –

ρ3 0.6000 0.6523 0.1322 0.3863 0.8833 – – – – –

π1 0.4500 0.3754 0.0583 0.2573 0.4945 – – – – –

π2 0.3500 0.3346 0.0562 0.2206 0.4508 – – – – –

π3 0.2000 0.2899 0.0633 0.1671 0.4201 – – – – –

R2 0.4354 – – – – – – – – –

r2 – 0.3440 – – – – 0.0187 – –

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.
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Fig. 2 provides better insight as to why the SAR estimates have
consistently low variance but large bias. This figure plots the fitted
values for each model type against the true process of y. The SAR
model in this case captures very little of the process due to clear
misspecification and captures roughly the same level of information
regardless of the R2 used. In effect, the SAR is capturing a small
amount of signal and can continue to capture that same level
throughout the simulation environments. It should be stressed that
the results here are expected for the SAR model as both spatial
heterogeneity and spatial dependence are present in the DGP by

construction. The results are misleading and spurious relative to the
known values.

5. Empirical application

Lately there have been a number of empirical studies which utilize
spatial econometric methods to estimate hedonic pricing in real estate.
It is within this domain that the SAR-M model will be illustrated. By
reviewing the housing literature using the Social Science Citation
Index, (Kuminoff et al., 2010) underline that spatial autocorrelation
is controlled by fixed effects for more than 50 percent of hedonic price
analyses. It is often assumed to be a preferable process in the face of
spatially correlated omitted variables. Directly refuting this assertion
Anselin and Arribas-Bel (2013) clearly illustrate that fixed effects
models do not properly account for spatial dependence in most cases.
The illustration presented here will show that both spatial dependence
and heterogeneity can be properly estimated with mixture models. As
underlined in the Monte Carlo experiments, spatial regression models
not robust to mixture distributions may provide spurious results and
artificially create spatial dependence. This illustration will confirm that
ignoring the SAR-M model in favor of standard spatial based models
will produce a biased estimate for ρ generally in an upward fashion.
Ignoring the spatial dependence however produces biased parameter
estimates even in the mixture case.

The housing dataset used here was obtained from the Hamilton
County Auditor. Sale price for the year 2011 has been merged with an
extensive database of residential single-family properties in the City of
Cincinnati. This database contains information pertaining to the

Table 5
Simulations: low signal.

TV SAR-M Std Dev L95⋆ U95⋆ SAR Std Dev L95⋆ U95⋆

β11 −0.5000 −0.2738 0.4119 −0.9991 0.6214 β1 −2.1660 0.0790 −0.3719 −0.0599
β12 −0.7500 −0.5556 0.3238 −1.1078 0.3197 β2 0.2379 0.0824 0.0795 0.3988
β21 0.5000 0.0996 0.4525 −0.9023 0.8223 – – – – –

β22 0.8000 0.5081 0.4290 −0.5531 1.1826 – – – – –

β31 −1.0000 −0.8091 0.2767 −1.2488 −0.2097 – – – – –

β32 1.2000 0.8048 0.3181 0.0264 1.3029 – – – – –

σ21 24.0000 25.1783 3.9301 18.7115 34.1922 σ2 22.1068 0.8985 20.4180 23.9257
σ22 21.0000 23.9616 3.5976 17.9829 32.2192 – – – – –

σ22 18.0000 22.5176 3.1707 17.2239 29.7827 – – – – –

ρ1 −0.3000 −0.2178 0.1841 −0.5533 0.1167 ρ 0.1866 0.0341 0.1190 0.2540
ρ2 0.3000 0.4061 0.1575 0.0453 0.6770 – – – – –

ρ3 0.6000 0.5713 0.1217 0.3408 0.8043 – – – – –

π1 0.4500 0.3769 0.0822 0.2116 0.5377 – – – – –

π2 0.3500 0.3282 0.0716 0.1817 0.4744 – – – – –

π3 0.2000 0.2949 0.0695 0.1583 0.4400 – – – – –

R2 0.3115 – – – – – – – – –

r2 – 0.1772 – – – – 0.0113 – –

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.

Fig. 2. The solid line in Figure (2) specifically illustrates the signal in the simulated data.
Each model selection is compared to the true signal via the estimate y . This figure clearly
shows that homogeneous SAR models are unable to adequately capture the available
signal in the simulated data.

Table 6
Data statistics and definitions.

Variable Mean Std. Dev. Min Max Description

Price* 127.00 167.00 3.5 3500.00 Sales price in 2011 of single-family residential properties (Hamilton County Auditor)

DistCBD 10.02 0.54 7.52 10.92 Distance to Downtown Cincinnati (calculated in ArcView)
Sqftland 5431.66 2.12 475.61 433,653.00 Size of parcel in square feet (Hamilton County Auditor)
Sqftbuilt 992.28 1.36 403.99 6438.17 Size of floor space (Hamilton County Auditor)
Numbdrooms 3.07 1.09 0.00 20.00 Total number of bedrooms (Hamilton County Auditor)
Age 86.23 30.15 0.00 198.00 Age of the house in years (Hamilton County Auditor)
Full Baths 1.59 0.75 0 9 Number of full bathrooms
Central Air 0.63 0.48 0 1 Dummy indicating if home has central air
Age65 11.51 4.68 0.00 28.10 Percent population 65 years and older (2010 Census)
Renter 51.95 17.32 3.22 97.64 Percentage of renters (2010 Census)
HSdegree 84.69 10.30 58.50 100.00 Percent population with High School degree (2010 Census)

*: In 1000's of dollars.
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structural characteristics of each home. The data set is comprised of
7574 residential properties sold in 2011. In addition to the sales
information and structural characteristics, a number of neighborhood
attributes have been included using Census data to capture the impact
of local amenities on real estate prices. Neighborhoods are delineated

by the 116 census tracts within the city limits and a log-linear
functional form is used to control for large variation in sale price.
Variables along with some descriptive statistics are presented in
Table 6.

The distribution of observed sale prices is shown to have a multi-

Fig. 3. Panel (a) shows distribution of the home prices prior to transformation. As expected this distribution is heavily skewed with a long right tail. Panel (b) shows the post
transformation home prices. Clear bi-modality and thick tails are visible.

Table 7
SAR-M estimates.

Group 1 Group 2

Mean Std. Dev L95⋆ U95⋆ Mean Std. Dev L95⋆ U95⋆

Intercept 4.6838 0.5922 3.4710 5.8021 7.4447 0.9028 5.6750 9.2276
distCBD −0.4226 0.0368 −0.4946 −0.3503 −0.2872 0.0594 −0.4024 −0.1711
logsqftland 0.1664 0.0367 0.0962 0.2431 −0.0477 0.0453 −0.1337 0.0447
logsqftbuild 0.2375 0.0647 0.1144 0.3674 0.2508 0.0992 0.0517 0.4386
Numbdrms 0.0728 0.0144 0.0455 0.1022 0.0134 0.0205 −0.0271 0.0534
House Age −0.0018 0.0006 −0.0030 −0.0007 −0.0141 0.0012 −0.0164 −0.0117
Full Baths 0.1420 0.0229 0.0970 0.1867 0.1115 0.0342 0.0444 0.1782
Central Air 0.5030 0.0365 0.4329 0.5766 0.5558 0.0544 0.4490 0.6602
Age 65 0.0035 0.0028 −0.0023 0.0090 −0.0042 0.0055 −0.0152 0.0062
Renter −0.0007 0.0010 −0.0028 0.0014 −0.0021 0.0018 −0.0056 0.0016
Hsdegree 0.0654 0.0028 0.0598 0.0708 0.0459 0.0039 0.0378 0.0533
σ2 0.1867 0.0158 0.1572 0.2189 0.4491 0.0306 0.3931 0.5124
π 0.4283 0.0217 0.3846 0.4693 0.2692 0.0241 0.2234 0.3169

Group 3 Group 4
Mean Std. Dev L95⋆ U95⋆ Mean Std. Dev L95⋆ U95⋆

Intercept 6.8459 0.6025 5.6820 8.0549 12.9903 2.9694 6.7780 18.6099
distCBD −0.4157 0.0409 −0.4959 −0.3354 −0.3764 0.2596 −0.8569 0.1797
logsqftland 0.0644 0.0267 0.0179 0.1227 −0.0410 0.1502 −0.2649 0.3596
logsqftbuild 0.3737 0.0681 0.2401 0.5089 −0.0177 0.3521 −0.7635 0.6609
Numbdrms 0.0760 0.0198 0.0353 0.1144 0.0462 0.0954 −0.1424 0.2349
House Age 0.0010 0.0006 −0.0001 0.0022 0.0033 0.0027 −0.0018 0.0087
Full Baths 0.1967 0.0306 0.1357 0.2567 0.4521 0.1760 0.0917 0.7807
Central Air 0.1770 0.0436 0.0864 0.2592 −0.6142 0.1927 −1.0083 −0.2451
Age 65 0.0110 0.0033 0.0046 0.0175 0.0229 0.0195 −0.0161 0.0606
Renter −0.0017 0.0012 −0.0041 0.0008 0.0010 0.0070 −0.0115 0.0164
Hsdegree 0.0423 0.0023 0.0374 0.0465 0.0043 0.0091 −0.0143 0.0219
σ2 0.1516 0.0168 0.1219 0.1877 0.7072 0.1453 0.4731 1.0446
π 0.2532 0.0237 0.2091 0.3000 0.0493 0.0079 0.0349 0.0654
ρ 0.1343 0.0163 0.1120 0.1747
Num. Obs. 7574
DIC −16,305

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.
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modal structure, as plotted in Fig. 3, which provides at least weak
evidence of a possible mixture structure. Even though plot (3a) does
not reveal a multi-modal distribution directly it does indicate one
which is skewed with a large right tail. The log of that same data (plot
(3b)) exhibits some level of multi-modality with two distinct modes
readily visible. Fitting a mixture of normals to the observed housing
price will accommodate both data structures though this example
makes clear the dangers of taking an inferential leap and equating
visual modes to the number of component mixtures under a cursory
examination of the data. Even if sale prices were to be tightly clustered,
the within-cluster distribution of observed prices may be non-normal
and provide evidence that a mixture of distributions is a more adequate
representation of the true process. Heterogeneity is thought to be
caused not by the unobserved variation in household preferences but

mainly by housing quality that is unobserved by the econometrician
(Epple et al., 2014).

Tables 7 and 9 cover the results of the SAR-M and SAR specifica-
tions respectively. The SAR-M is presented with four component
distributions, a decision made by comparing Deviance Information
Criterion (DIC) values along with diagnostic plots for several compet-
ing specifications. Alternative specifications included models with up to
six component distributions. While DIC indicated a model with five
components may ultimately provide a better fit, the four component
mixture model was selected. This is the result of examining diagnostic
plots, parameter estimates, and 95% highest-posterior-density (HPD)
intervals for both specifications.6 Under a five component model the
parameter estimates for the fifth group were not significantly different
from zero, the 95% HPDs for the remaining groups increased relative
to the four component case, and there was no statistical change in the
estimate of ρ. As noted by Frühwirth-Schnatter (2004), the marginal
likelihood is generally a more accurate and applicable model selection
tool when evaluating mixture models provided it is possible to derive
an explicit form from which to make comparisons.

The SAR specification indicates that a majority of the variables are
significantly different than zero with well-defined 95% credible inter-
vals. To properly interpret the SAR-M model, partial derivatives of the
reduced form (23) have to be calculated. Conditional on the indicator
matrix z, partial derivatives are equal to

δy
δX

I Ψ W zβ
′

= ( − ) diag( ),͠
k

N k
−1

(28)

where βk is a G-dimensional vector of parameters. LeSage and Pace
(2009) define the direct effect as the average of the diagonal elements

Table 8
SAR-M: partial effects estimates.

Group 1 Group 2 Group 3 Group 4

Mean L95⋆ U95⋆ Mean L95⋆ U95⋆ Mean L95⋆ U95⋆ Mean L95⋆ U95⋆

distCBD −0.4882 −0.6014 −0.3760 −0.3319 −0.5108 −0.1529 −0.4802 −0.6019 −0.3597 −0.4345 −1.2175 0.4818
logsqftland 0.1923 0.0893 0.3141 −0.0550 −0.1803 0.0838 0.0744 0.0054 0.1807 −0.0472 −0.3909 0.6167
logsqftbuild 0.2744 0.0834 0.4728 0.2898 −0.0172 0.5816 0.4317 0.2199 0.6305 −0.0209 −1.2386 1.0199
Numbdrms 0.0842 0.0419 0.1274 0.0156 −0.0471 0.0743 0.0879 0.0258 0.1449 0.0534 −0.2318 0.3463

Total House Age −0.0021 −0.0039 −0.0003 −0.0163 −0.0197 −0.0130 0.0012 −0.0005 0.0031 0.0038 −0.0038 0.0127
Full Baths 0.1641 0.0932 0.2312 0.1288 0.0235 0.2287 0.2272 0.1372 0.3209 0.5221 −0.0373 1.0284
Central Air 0.5811 0.4726 0.6897 0.6423 0.4702 0.8104 0.2043 0.0550 0.3256 −0.7099 −1.3416 −0.1583
Age 65 0.0040 −0.0048 0.0122 −0.0049 −0.0216 0.0110 0.0127 0.0030 0.0224 0.0264 −0.0331 0.0859
Renter −0.0008 −0.0041 0.0023 −0.0024 −0.0079 0.0033 −0.0019 −0.0059 0.0021 0.0012 −0.0178 0.0259
Hsdegree 0.0756 0.0691 0.0833 0.0530 0.0403 0.0646 0.0489 0.0423 0.0545 0.0050 −0.0246 0.0327
distCBD −0.0644 −0.0968 −0.0453 −0.0438 −0.0792 −0.0190 −0.0632 −0.0937 −0.0433 −0.0570 −0.1736 0.0687
logsqftland 0.0253 0.0110 0.0445 −0.0072 −0.0247 0.0117 0.0098 0.0007 0.0246 −0.0061 −0.0573 0.0835
logsqftbuild 0.0362 0.0106 0.0713 0.0383 −0.0022 0.0864 0.0569 0.0286 0.0937 −0.0032 −0.1715 0.1362
Numbdrms 0.0111 0.0053 0.0193 0.0021 −0.0060 0.0110 0.0116 0.0032 0.0217 0.0071 −0.0314 0.0479

Indirect House Age −0.0003 −0.0006 0.0000 −0.0021 −0.0031 −0.0015 0.0002 −0.0001 0.0005 0.0005 −0.0005 0.0018
Full Baths 0.0216 0.0114 0.0366 0.0169 0.0030 0.0326 0.0300 0.0169 0.0493 0.0686 −0.0054 0.1483
Central Air 0.0766 0.0549 0.1095 0.0848 0.0567 0.1329 0.0268 0.0073 0.0476 −0.0938 −0.2020 −0.0203
Age 65 0.0005 −0.0006 0.0018 −0.0006 −0.0030 0.0015 0.0017 0.0004 0.0032 0.0035 −0.0046 0.0121
Renter −0.0001 −0.0006 0.0003 −0.0003 −0.0011 0.0004 −0.0002 −0.0008 0.0003 0.0002 −0.0025 0.0038
Hsdegree 0.0099 0.0080 0.0133 0.0070 0.0047 0.0108 0.0064 0.0051 0.0087 0.0006 −0.0036 0.0043
distCBD −0.4238 −0.5223 −0.3266 −0.2881 −0.4397 −0.1342 −0.4169 −0.5209 −0.3102 −0.3775 −1.0543 0.4165
logsqftland 0.1670 0.0776 0.2755 −0.0478 −0.1574 0.0731 0.0646 0.0047 0.1575 −0.0411 −0.3386 0.5408
logsqftbuild 0.2382 0.0709 0.4128 0.2516 −0.0150 0.5030 0.3748 0.1915 0.5468 −0.0177 −1.0633 0.8969
Numbdrms 0.0731 0.0365 0.1104 0.0135 −0.0412 0.0647 0.0763 0.0224 0.1249 0.0463 −0.2009 0.3006

Direct House Age −0.0018 −0.0034 −0.0003 −0.0141 −0.0172 −0.0112 0.0010 −0.0005 0.0026 0.0033 −0.0034 0.0109
Full Baths 0.1424 0.0807 0.2009 0.1118 0.0205 0.1980 0.1973 0.1181 0.2780 0.4535 −0.0328 0.8928
Central Air 0.5045 0.4135 0.6005 0.5575 0.4105 0.6981 0.1775 0.0477 0.2838 −0.6161 −1.1584 −0.1406
Age 65 0.0035 −0.0042 0.0107 −0.0042 −0.0189 0.0096 0.0111 0.0026 0.0195 0.0229 −0.0287 0.0746
Renter −0.0007 −0.0036 0.0020 −0.0021 −0.0069 0.0028 −0.0017 −0.0050 0.0018 0.0010 −0.0154 0.0221
Hsdegree 0.0656 0.0579 0.0734 0.0460 0.0352 0.0556 0.0425 0.0356 0.0479 0.0043 −0.0212 0.0288

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.

Table 9
SAR results.

Mean Std. Dev L95⋆ U95⋆

Intercept 2.3329 0.2637 1.8043 2.8377
distCBD −0.218 0.0181 −0.2538 −0.1827
logsqftland 0.0739 0.0118 0.0511 0.0967
logsqftbuild 0.2288 0.0284 0.1721 0.2827
Numbdrms 0.0392 0.0084 0.0228 0.0555
House Age −0.0021 0.0003 −0.0027 −0.0016
Full Baths 0.1025 0.0123 0.0782 0.1254
Central Air 0.3399 0.0175 0.3038 0.3727
Age 65 −0.0001 0.0016 −0.0032 0.0032
Renter −0.0007 0.0005 −0.0017 0.0003
Hsdegree 0.0281 0.001 0.0261 0.0301
σ2 0.2607 0.0055 0.2506 0.2719
ρ 0.5518 0.0099 0.533 0.571

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior
density.

6 Estimation results for all number of mixture components along with AIC, BIC, DIC
and diagnostic plots are available upon request.
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of the matrix of partial derivatives (28), and the indirect effect as the
average of the cumulative off-diagonal elements from each row. Since,
in the case of a heterogeneous model, there is the potential for
considerable variation across parameter estimates (including ρ) these
summaries are averaged over observations within the same sub-group.
Table 8 provides scalar summaries of the own-partial (direct) and
cross-partial (indirect) derivatives outlined by group from the SAR-M
specification. It should be noted that additional direction on the
interpretation of these effects is forthcoming (Cornwall, 2016)
(Table 9). This paper will further decompose the outlined partial
effects into group level spill-in and spill-out effects (see LeSage and
Chih, 2016). The scalar summaries for the SAR specification are
outlined in Table 10.

Under the SAR specification, the largest positive impacts are
produced by the direct effects of home size (logsqftbuild) and the
presence of central air. Also important are the number of full bath-
rooms (Full Baths) though to a lesser extent when compared to the
aforementioned attributes. The largest negative impact on home values
is measured distance to the central business district highlighting once
again that location in real estate is incredibly important.

The results of the SAR-M model tell a similar but richer story. The
SAR model failed to reject the null that β = 0Age65 while the SAR-M
rejects this null for group three. Increasing the proportion of residents
aged 65 or older by 1% increases the home value by approximately
1.27% for this specific group. One possible explanation for such a
relationship is that older residents tend to value externalities created by
similar neighbors (e.g. reduced noise pollution) and as a result are
willing to pay some small premium to secure such neighbors.

Perhaps more interesting is the parameter estimates of Central Air,
the presence of which generally leads to increased home values. The
SAR-M supports this for the majority of the sample however for homes
in group four the presence of Central Air has a large negative effect on
home value. Homes found in group four tend to be older than the
average home in each of the other groups, averaging nearly 90 years,
indicating some of these homes may be designated as historic sites.
Hamilton County has separate rules which govern historic homes and
the improvements that can be made to such properties.7 This is one
possible explanation for the negative effect Central Air has on home
value (for group 4); adding it may cause a loss in historical designation
and by extension value.

Consider that for some of the variables in the SAR-M specification
the group parameters are not only similar in mean but overlap heavily
with respect to their highest posterior density. This homogeneity across
groups indicates that there may be some larger regional preference set
influencing home prices based on these attributes. Distance to the

central business district appears to have a relatively homogeneous
effect on home prices (with the exception of those found in group four)
as does the number of full bathrooms. Note that these homogeneous
variables tend to have directionality consistent previous research. For
instance, a lower number of bathrooms tends to lead to a lower home
value ceteris paribus.

Different intercepts across the groups within the SAR-M results tell
us that the homes included in group four benefit more from unobser-
vable traits than the other three groups. This supports the idea that,
within this data set, there is some level of spatial heterogeneity which
would be identifiable if appropriate borders could be constructed in a
spatial fixed effects specification. Of course the heterogeneous nature of
the coefficients and resulting partial derivatives would be missed in
such a model. (Fig. 4 ).

Fig. 5 outlines the classification probabilities as defined in (21).
Here it can be seen that there is in fact some clustering that is creating
higher spatial intensity within areas, again leading to the belief that
spatial heterogeneity is present within the data. Homes in the eastern
part of Hamilton County are more likely to be in group one though
pockets of similar homes appear all over the map. The same can be said
for group four which had the most drastic difference in intercept
though many of these homes seem to be most probably located in the
southwest and central portion of the county with pockets existing
throughout the remainder of the space.

It should be pointed out that only one value of ρ is outlined for the
SAR-M model. Testing showed that each group had statistically
indistinguishable ρ values for each group and the variance of other
parameters was reduced by constraining the model to a single ρ
parameter over the full data set.8 Since the SAR-M model nests a
number of specification cases it is important to consider the dynamics
of the market being modeled. In this case, it seemed appropriate that
the housing market would have similar levels of spatial dependency
across groups in such a small geographic area and as a result the
constrained model was chosen.

6. Conclusions

This paper develops a method whereby both spatial heterogeneity
and dependence are controlled for within the same construct.
Previously, these two issues were handled separately and have been
shown to provide biased or spurious results if the correct specification
was not chosen. The method presented here has a number of
advantages. First, it is easily implemented within the existing frame-

Table 10
SAR: partial effects.

Direct Indirect Total

Mean L95⋆ U95⋆ Mean L95⋆ U95⋆ Mean L95⋆ U95⋆

distCBD −0.2349 −0.2737 −0.1969 −0.2517 −0.2972 −0.2064 −0.4866 −0.5669 −0.4060
logsqftland 0.0797 0.0550 0.1041 0.0854 0.0586 0.1125 0.1650 0.1147 0.2166
logsqftbuild 0.2466 0.1849 0.3049 0.2643 0.1948 0.3330 0.5109 0.3810 0.6352
Numbdrms 0.0423 0.0244 0.0598 0.0453 0.0252 0.0645 0.0875 0.0500 0.1238
House Age −0.0023 −0.0029 −0.0018 −0.0025 −0.0031 −0.0019 −0.0047 −0.0060 −0.0036
Full Baths 0.1104 0.0842 0.1353 0.1183 0.0889 0.1477 0.2287 0.1736 0.2815
Central Air 0.3662 0.3274 0.4019 0.3924 0.3439 0.4422 0.7586 0.6734 0.8422
Age 65 −0.0001 −0.0035 0.0035 −0.0001 −0.0037 0.0038 −0.0002 −0.0072 0.0073
Renter −0.0007 −0.0018 0.0004 −0.0008 −0.0020 0.0004 −0.0015 −0.0038 0.0007
Hsdegree 0.0303 0.0281 0.0325 0.0325 0.0293 0.0359 0.0628 0.0575 0.0682

Note: ⋆ L95 and U95 represent the lower and upper bounds of the 95% highest posterior density.

7 See http://www.cincinnati-oh.gov/buildings/historic-conservation/ for one such
example of local regulations governing historic properties.

8 Each had a mean of approximately .135 with nearly identical credible intervals. Odds
against ρ = .135g are 1.6374 to 1, 1.2560 to 1, 1.0409 to 1, and 1.0323 to 1 respectively
where 0.135 is the approximate value found in the constrained SAR-M model. These
results clearly indicate that the scalar value is statistically indistinguishable between the
groups and led to the constrained homogeneous SAR-M model choice.
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work of mixture models in econometric literature. This allows the
researcher to lean on a robust line of research outlining both inference
and selection criteria for these models. Second, the incorporation of the
spatial framework is quite flexible and while this particular exposition
focused on the SAR specification the SAR-M model can be extended to
both the Spatial Durbin Error (SDEM) and Spatial Durbin Model
(SDM) structures.

Spatial mixture models have a number of potential applications. A

latent indicator variable is used to capture population heterogeneity
thereby allowing researchers to evaluate data that exhibits both spatial
heterogeneity and dependence. Even if the population heterogeneity is
well-thought-out a priori and the underlying causal process seems to be
well-delineated, it is unlikely that the researcher will be able to identify
all of the important predictors. A mixture structure can be used to
explore a data set for evidence of clusters characterized by differential
effects and provide a more robust interpretation of the model given data.

Fig. 4. Diagnostic Plots - High Signal: These panels show the post burn-in draws from the conditional distributions of each parameter. The model is stable in this environment with no
evidence of switching or non-convergence. These diagnostic plots are from high signal simulations.
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Both the Maximum Likelihood and Bayesian estimation method for the
SAR model are not robust to this structure and depend heavily on the
parametric family specified by the researcher.

The SAR-M model is a strong, semi-parametric tool that can be
used to model data with complex distribution form and nests the
standard mixture, SAR, and OLS models as a special case. Future
research will focus on extending this structure to more empirically
applicable spatial specifications and using the flexibility of mixture
distributions to provide new insight regarding the interpretation of
direct and indirect effects. Finally, the model presented here is valid
only in a cross-sectional environment. Future work will focus on
extending it to panel based models with both time static and variant
group membership.
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