
Predictive Testing for Granger Causality via
Posterior Simulation and Cross Validation

Gary J. Cornwall1 Jeffrey A. Mills2

Beau A. Sauley2

Huibin Weng2

1Bureau of Economic Analysis
2Department of Economics, University of Cincinnati

November 18, 2018

Abstract

This paper develops a predictive approach to Granger causality
testing that utilizes k-fold cross-validation and posterior simulation
to perform out-of-sample testing. A Monte Carlo study indicates
that the cross-validation predictive procedure has improved power in
comparison to previously available out-of-sample testing procedures,
matching the performance of the in-sample F-test while retaining the
credibility of post sample inference. An empirical application to the
Phillips curve is provided evaluating the evidence on Granger causality
between inflation and unemployment rates.
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1 Introduction

Granger causality testing is a standard procedure for analyzing multivariate
time series that has seen widespread use across several disciplines, including
economics (Yu et al., 2015; Ghysels et al., 2016; Diks and Wolski, 2016),
physics (Dhamala et al., 2008; Barnett et al., 2009; Zhang et al., 2011; At-
tanasio et al., 2012; Barnett and Seth, 2015), and, more recently, neuroscience
(Roebroeck et al., 2005, 2011; Liao et al., 2011; Hu et al., 2016; Barnett et al.,
2017; Stokes and Purdon, 2017). Since Ashley et al. (1980), there has been
considerable interest in developing tests that provide out-of-sample evalua-
tion of evidence for Granger causality (Diebold and Mariano, 1995; Clark and
McCracken, 2001, 2005, 2006; McCracken, 2007; Ashley and Tsang, 2014).

A common thread of the out-of-sample testing literature is that credible
Granger causality testing “must rely primarily on the out-of-sample forecast-
ing performance of models relating the original (non-prewhitened) series of
interest.” (Ashley et al., 1980). This follows Feigl’s definition of “causal-
ity as predictability according to a law” so that Granger causality can be
viewed as providing an evidential step useful for identifying causal relation-
ships (Poirier, 1988). Further, Clark (2004) provides simulation evidence
that out-of-sample test procedures avoid the possible spurious results due to
overfitting that can arise with in-sample tests. On the other hand, as Inoue
and Kilian (2005) point out, there is a loss of efficiency and power with out-
of-sample tests due to partitioning the data and only using a sub-sample for
estimation. This loss of power explains the continued popularity of the in-
sample F -test (Sims, 1972), despite the potential for overfitting and pre-test
estimator bias.

This paper develops an out-of-sample Granger causality test with empir-
ical power characteristics close to that of the in-sample F -test, and superior
to other out-of-sample tests. It has been shown that, under some condi-
tions, the out-of-sample tests can produce greater power than the in-sample
F -test, e.g. when discrete structural breaks are present in the time series
(Chen, 2005b). For the majority of data generating processes considered in
simulation studies however, the in-sample test provides a substantial increase
in power compared to any of the out-of-sample tests currently available, par-
ticularly with small samples. Simulation results indicate that even under
conditions most favorable to the in-sample F -test (stationary, stable data
generating process with i.i.d. errors) the new testing procedure proposed
herein has power close to that of the in-sample F -test. This is achieved
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by extending the ideas of Ashley and Tsang (2014), who employ a cross-
validation approach to enable out-of-sample evaluation with modest sample
sizes, resulting in a test procedure that consistently exhibits superior power
to previously developed out-of-sample tests.

The main contributions of this paper are twofold. First, an alternative ap-
proach to cross-validation that is popular in the statistics literature, namely
k-fold cross-validation and when k = 1 leave-one-out cross validation (LOO-
CV), is considered (Stone, 1977; Picard and Cook, 1984; Arlot et al., 2010).
This provides a substantial improvement in the power of the test, and elimi-
nates the need to make an arbitrary choice of partition point. The LOO-CV
approach has the benefits of an out-of-sample test (avoidance of spurious re-
sults due to overfitting and pre-test estimator bias), while the loss in efficiency
and power is minimal since only one observation is omitted for estimation
purposes.

Second, Bayesian predictive inference and MCMC sampling methods are
employed to obtain the posterior predictive distribution of the proposed test
statistic. The out-of-sample evaluation using cross validation employed by
Ashley and Tsang (2014) results in a statistic, such as a root mean square
prediction error (RMSPE) or an F -statistic, with unknown distribution. The
out-of-sample “F-statistic” is no longer F-distributed and can be negative
because the restricted sum of squares for out-of-sample predictions can be
smaller than the unrestricted sum of squares if the restrictions lead to greater
predictive accuracy. The approach thus requires asymptotic assumptions or
bootstrapping. This paper explores MCMC posterior simulation methods
for inference as an alternative. This allows evaluation of the exact posterior
density for the test statistic (such as RMSPE) with any sample size and, by
adopting the testing procedure developed in Mills (2018), allows computation
of posterior odds ratios to compare out-of-sample predictive performance.

The new testing procedure is relatively easy to use in practice and not
overly computationally burdensome. To provide some guidance to applied
researchers, an example application with some further details on implemen-
tation is provided in section 4.1

The remainder of the paper is organized as follows. The proposed proce-
dure is developed in section 2. Results of a Monte Carlo simulations exam-
ining the efficacy of the proposed procedure are given in section 3. Section

1Matlab, R and Julia code to implement the testing procedure is available at:
https://github.com/tszanalytics/GrangerCausality
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4 provides an empirical example related to the Phillips curve. Section 5
concludes.

2 Testing for Granger Causality via predic-

tive cross validation

The series x1:T is said to Granger cause y1:T if past values of xt, x1:t−1, have
additional power in forecasting yt after controlling for the past of yt, y1:t−1

(Seth, 2007), so that p(yt|y1:t−1, x1:t−1) 6= p(yt|y1:t−1). Testing for Granger
causality (GC) generally takes place in a linear vector autoregression (VAR)
model with Gaussian errors. The linear and Gaussian stochastic process
assumptions can be relaxed in the following without great difficulty, but will
be adhered to herein. Also, we focus on a bivariate model for simplicity of
exposition, but the extension to more than two variables is straightforward.
The testing framework is then a VAR(p),[

α(B) φ(B)
β(B) γ(B)

] [
yt
xt

]
=

[
ut
vt

]
,

[
ut
vt

]
∼ MVN(0, V ), (1)

where α(B), φ(B), β(B), γ(B) are pth order polynomials in B, the backshift
operator, Bxt = xt−1, i.e., α(B) = 1−α0−α1B−α2B

2−· · ·−αpBp, φ(B) =
−φ1B−φ2B

2−· · ·−φpBp, etc., and MVN is a multivariate normal distribution
with mean vector 0 and covariance matrix V , which is assumed to be iid
homoskedastic. Homoskedasticity and serial independence of the error terms
are imposed for expositional convenience; a more general heteroskedastic and
time dependent error covariance structures can be modeled using MCMC
in a seemingly unrelated regression framework (Mills and Namavari, 2017).
Simulation results with a heteroskedastic data generating process (DGP) are
provided in section 3.3.

For equation (1), the null hypothesis that xt does not Granger cause yt
can be expressed as H0 : φ1 = ... = φp = 0, which naturally suggests the
in-sample F -test widely used in applied research (Sims, 1972). As mentioned
above, the drawback with the in-sample F -test is that it does not test for a
post estimation sample predictive effect, so it is less credible as a true test
of GC. The out-of-sample predictive test proposed herein is as follows.

First, the equation for yt in (1) is rewritten as,

Y = ZΦ + ε, (2)
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where Y is a (T − p) × 1 vector containing yp+1:T , ε is a (T − p) × 1 vector
[up+1:T vp+1:T ]′, Z is a (T − p)× (2p+ 1) matrix [1 Yt−1 ... Yt−p Xt−1 ... Xt−p],
with 1 a (T − p) × 1 vector of 1s, Yt−j a (T − p) × 1 vector containing
yp−j+1:T−j and Xt−j a (T − p) × 1 vector containing xp−j+1:T−j, and Φ =
[α0 α1 ... αp φ1 ... φp]

′. To test whether yt Granger causes xt we rewrite the
equation for xt in (1) similar to (2), and test H0 : β1 = ... = βp = 0.

For k-fold cross validation (with k = 1 for LOO-CV), for each value of τ
from p+1 to T−k+1, omit rows τ to τ+k+p−1 from Y and Z to construct
Y−τ and Z−τ such that they contain rows p + 1:τ − 1, τ + k + p:T of Y and
Z respectively. Adopting the standard Normal-Inverted Gamma prior (or
Normal-Inverted Wishart for more general covariance matrix specifications)
for the parameters of a model in the form of (2), the conditional posterior
distributions are analytically tractable and well known: Φ|V ∼ N(Φ̄,Ω),
V |Φ ∼ IG(ν/2, δ/2), Φ̄ = Ω[V −1Z ′−τY−τ + V −1

0 Φ0], Ω = [Z ′−τV
−1Z−τ +

V −1
0 ]−1, ν = ν0 + n, δ = δ0 + (Y−τ − Z−τΦ)′(Y−τ − Z−τΦ), with Φ0, V0,
ν0, δ0 prior parameters. The conditional posterior predictive distribution for
out-of-sample predictions of Y is given by ỹτ |Φ, V ∼ N(Z−τ Φ̄,Ω), where ỹτ
is the predicted value for yτ , so an MCMC sample is readily obtained from
the Gibbs algorithm (Koop et al., 2007).

Using both k-fold cross validation and Gibbs sampling leads to the fol-
lowing algorithm.

Algorithm 1

1. For τ = 1 + p : T and arbitrary starting value V (0):

(a) For i = 1 : M + b, generate draws

i. Φ(i)|V (i−1) ∼ N(Φ̄,Ω), with V = V (i−1) in Φ̄ and Ω,

ii. V (i)|Φ(i) ∼ IG(ν/2, δ(i)/2) with Φ = Φ(i) in δ,

iii. ỹ
(i)
τ :τ+k−1|Z−τ ,Φ(i), V (i) ∼ N(Z−τΦ

(i), V (i)).

(b) Omit b burn-in draws, returning M post burn-in draws from the
posterior predictive distribution for yτ :τ+k−1.

2. Concatenate the yτ :τ+k−1 draws to produce an M × T matrix,

Ỹ =


ỹp+1,1 ỹp+2,1 ... ỹT,1
ỹp+1,2 ỹp+2,2 ... ỹT,2

...
...

. . .
...

ỹp+1,M ỹp+2,M ... ỹT,M

 . (3)
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Applying Algorithm 1 to (2) with Z as defined above produces an ensem-
ble of M realizations, ỸU , of the out-of-sample posterior predictive process
for y1:T that allows for GC from xt to yt. Imposing the restrictions in the
null hypothesis, equation (2) becomes,

Y = Wα + ω, (4)

where W = [1 Yt−1 ... Yt−p], α = [α0 α1 ... αp]
′, and ω = [up+1:T ]′. Defining

W−τ by omitting rows τ to τ + k + p − 1 from W , allows application of
Algorithm 1 to equation (4). This produces an M × T matrix ỸR, with the
same structure as ỸU , but generated under the assumption of no GC from xt
to yt.

Since the precision of parameter estimates decreases as the sample size
is reduced, a logical approach is to set k as small as feasible. This will
ensure that the precision of the model parameter estimates is close to that
for the entire sample. This leads to k = 1, or LOO-CV, as the optimal
choice of k provided the computational costs are not too great. However,
one potential drawback of LOO-CV is that, if the null hypothesis is true,
then consistent estimates of the parameters in the null hypothesis converge to
zero asymptotically, so as T →∞, ỸU → ỸR, suggesting that values of k > 1
may lead to more discriminative power for testing. This issue is explored
in greater detail in Zhang and Yang (2015). As is demonstrated by the
simulation results in Section 3.3, while LOO-CV is unlikely to be particularly
computationally burdensome in standard applications, for reasonable sample
sizes values of k > 1 can be selected without much loss of statistical power
and with greater computational efficiency, so exploration over different values
of k is a viable strategy.

For example, ỸR for 120 observations generated from a simple AR(1) data
generating process (DGP) given by (1) with α(B) = 1−αBγ(B) = 0, φ(B) =
0, β(B) = 1, V = I2 is illustrated in Figure 1. In the Figure, the observed
values for the dependent variable are represented by the black line, and the
gray area is a plot of the prediction matrix, Ỹu. Each grey line is a realization
of the posterior predictive process, giving M = 104 draws from the predictive
distribution for each yt, t = 1 + p : T .
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Figure 1: Predictive Ensemble Matrix, ỸU .

To determine the evidence against GC, the two predictive ensembles, ỸU
and ỸR, are compared by applying a loss function to obtain a statistical
measure of average accuracy for each predictive realization, ỹ1:T,i, relative
to the actual data y1:T . The entire ensemble across the MCMC realizations
allows computation of the exact posterior distribution of this statistic, which
can then be used to test whether the additional information in xt, improves
predictive performance when predicting yt.

The L2 norm distance is a standard choice of loss function for both es-
timation and prediction, leading to the root mean square prediction error
measure (RMSPE), with the square root taken to scale the measure to match
the predicted variable. L1 loss is also examined, which leads to the robust
mean absolute error (MAE) measure of predictive performance.

When applied to a predictive ensemble Ỹ , L2 loss can be expressed as,

RMSPE(i) =

√√√√ 1

T

T∑
t=1

(yt,i − ỹt,i)2, i = (1, . . . ,M). (5)

Applying (5) to ỸU and ỸR gives two M×1 vectors of draws from the posterior

distributions for the RMSPE measures, dU = [RMSPE
(1)
U , ..., RMSPE

(M)
U ]′,
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and dR = [RMSPE
(1)
R , ..., RMSPE

(M)
R ]′. If the null hypothesis of no GC

is false, these distributions will differ in location and possibly scale. If the
null hypothesis is true, the distributions will have similar location, though
the variance may differ due to the additional noise from nonzero parameter
estimates of the extraneous parameters in the unrestricted model.

There are a number of potential ways to test if these two distributions
differ. Since interest is in a null hypothesis of no GC, a test based on a
comparison of means is a natural starting point. For the posterior means of
RMSPEU and RMSPER, µU =

∫
zp(dU = z|y, x)dz and µR =

∫
zp(dR =

z|y, x)dz, the no GC hypothesis can be examined by testing H0 : δ = µR −
µU ≤ 0 vs. H0 : δ > 0.

To facilitate this comparison, the odds against the null hypothesis are
calculated using an objective posterior odds ratio (Mills, 2018). This testing
procedure does not suffer from the Jeffreys-Lindley-Bartlett paradox and
allows the use of the same priors employed for posterior inference, including
uninformative priors, so that scientific objectivity can be maintained. The
outcome of the test is determined by the evidence from the data and any
background information incorporated in the likelihood and prior. With a
relatively uninformative prior, the prior has little to no influence on the test
result.

Minimizing expected loss leads to the decision rule: reject H0 if the pos-
terior odds O ≥ L(H1|H0)/L(H0|H1) = c0/c1, where L(H1|H0) = c0 is
the loss associated with choosing H1 when H0 is true (type I error), and
L(H0|H1) = c1 is the loss from choosing the null when the alternative is true
(type II error). The posterior odds ratio is,

O =
p(δ > 0|x, y)

p(δ ≤ 0|x, y)
(6)

Critical odds ratio values, c0/c1, that approximately match 10%, 5% and 1%
significance levels are 4:1, 7:1 and 30:1 respectively (Mills, 2018).

The testing procedure can be implemented by computing p(δ > 0|x, y))
and p(δ ≤ 0|x, y) from the psuedo-sample of M draws from the posterior for
δ to obtain p(δ > 0|x, y)) and p(δ ≤ 0|x, y), then computing the posterior
odds given by equation (6). This circumvents problems due to analytical
intractability. The law of large numbers assures that the expected value of
any function of the MCMC sample converges to its true value, i.e. for a
sample of M draws for z, as M →∞,
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1

M

M∑
i=1

f(z(i))→ E(f(z)), (7)

where z(i) is the ith pseudo-sample draw. The accuracy of the simulated
posterior density can be increased by increasing the pseudo-sample size, M .
Chen (2005a) provides a detailed review of methods for computing posterior
probabilities from an MCMC sample.

The distributional comparison of predictive performance can be extended
to include higher moments since one can envision situations in which the
restricted and unrestricted models produce predictions where E(δ|x, y) ≈ 0,
but in the presence of more parameter uncertainty, have different variance
or skewness for prediction errors. The derivation of the posterior odds from
decision theoretic considerations allows for such an extension by modifying
the test loss function. Setting L(H1|H0)/L(H0|H1) = c0σ̄

2
U/c1σ̄

2
R, weights

the test decision loss function so that the loss associated with type I and II
errors are weighted by the posterior variance of the dU and dR distributions,
σ̄2
R and σ̄2

U . Third and higher moments can be incorporated into the loss
function in a similar fashion if desired.

Dividing both sides of the decision rule by this ratio leads to an augmented
posterior odds ratio for evaluating the mean predictive error,

AO =
σ̄2
Rp(δ > 0|x, y)

σ̄2
Up(δ ≤ 0|x, y)

(8)

This can lead to improved test performance in situations in which the mean
prediction error is similar for both restricted and unrestricted models, but
the variance of predictions for the unrestricted model is greater due to the
inclusion of extraneous nonzero parameter estimates for parameters that are
actually zero when the null hypothesis is true. The lower mean predictive
variance for the restricted model then reduces the probability of a type I
error. Similarly if either posterior density is skewed, the third moment can
be incorporated into the loss function providing a further modified odds
ratio. This can be important in forecasting situations for example, where
avoidance of occasional large forecast errors may be more important than
slightly reduced average forecast errors overall.
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3 Monte Carlo Study

In this section, the small sample performance of the new GC testing proce-
dure is evaluated in comparison to the in-sample F -test (and Wald test when
heteroskedasticity is present), and the best performing out-of-sample test cur-
rently available in the literature, the Ashley and Tsang (2014) AT75 test. It
is important to note that there are a number of alternative in-sample tests
that have been proposed in the literature including, for example, nonpara-
metric, frequency domain and quantile approaches (Candelon and Tokpavi,
2016, Liu and Moneaar, 2016). However, since the purpose of this paper is to
propose and evaluate a new out-of-sample test in comparison to the best pre-
viously available out-of-sample test, for the sake of brevity these alternative
in-sample procedures are not considered herein.

Empirical rejection rates are computed for each of the tests, with steadily
increasing signal-to-noise ratio and the empirical test size fixed at 5% to allow
power comparisons. The in-sample F-test is,

F =
(RSSR −RSSU)/p

RSSU/(T − p− 1)
(9)

where RSSU = (Y − ZΦ̄)′(Y − ZΦ̄) and RSSR = (Y − Wᾱ)′(Y − Wᾱ).
The Wald chi-square test is a commonly employed alternative to the in-
sample F test as it is robust to potential heteroskedasticity. The Wald test
was therefore included in the simulations evaluating a heteroskedastic data
generating process. The Wald test is given by,

W = (RΦ)′[R′VΦR
′]−1RΦ (10)

where VΦ is the covariance matrix for Φ̂, and R is a (T − p) × (2p + 1)
matrix [0 Ip 0p] with Ip and 0p a p × p identity matrix and matrix of zeros
respectively.

The out-of-sample pseudo-F -statistic developed by Ashley and Tsang
(2014) is computed by splitting the sample into two sub-samples at a partition
point, τ , then using estimates from the sample 1 : τ to predict out-of-sample
values τ + 1 : T , and vice versa. While the choice of τ is arbitrary, Ashley
and Tsang provide simulations that indicate an optimal choice of τ at the
75th percentile of the sample for empirical applications. We label this test
statistic AT75, which is given by,

AT75 ≡
(RSSτR −RSSτU)/p

RSSτU/(T − p− 1)
, (11)
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where, RSSτU = (Yτ −Zτ Φ̄−τ )′(Yτ −Zτ Φ̄−τ ) + (Y−τ −Z−τ Φ̄τ )
′(Y−τ −Z−τ Φ̄τ ),

RSSτR = (Yτ −Wτ ᾱ−τ )
′(Yτ −Wτ ᾱ−τ ) + (Y−τ −W−τ ᾱτ )′(Y−τ −W−τ ᾱτ ), with

the subscript τ indicating the sample from 1:τ , and −τ indicating the sample
τ + 1:T . The distribution of the AT75 statistic is unknown; it is no longer
F -distributed because negative F values occur when RSSτR < RSSτU which
cannot happen with the in-sample F -test, so either asymptotic distributional
assumptions or bootstrapping is required to perform testing.

Ashley and Tsang employ the wild bootstrap (to address potential het-
eroskedasticity), however a drawback of the bootstrap in this setting is that
an assumption of iid or exchangeable errors is required unless a moving block
bootstrap is employed. The moving block bootstrap is difficult to implement
with cross validation because whole blocks must be eliminated whenever
one of the k + p observations is contained in the block (k observations for
out-of-sample prediction and p lags that contain one or more of those k ob-
servations). An advantage of MCMC methods here is that the ordering of
the residuals is preserved, so inherent dependence remains and only the k+p
observations need to be omitted.

To evaluate the small sample performance of these procedures, each of
the Monte Carlo simulations are carried out for sample sizes T = 30, 60, 100.
For AO computation, an uninformative prior and 10, 000 iterations of the
MCMC algorithm was used throughout sections 3 and 4.

The simulations have also been performed for larger samples, T ≥ 500,
and the results are consistent, though as expected all testing procedures
converge to a power of one as T increases.

3.1 Two variable VAR processes

Consider the data generating process (DGP),[
yt
xt

]
=

[
αt φ
0 γt

] [
yt−1

xt−1

]
+

[
ut
vt

]
, t = 1, . . . , T, (12)

where both ut and vt are iid N(0, 1). This DGP, from Chen (2005b), is
examined in three scenarios. The first scenario is with time-invariant pa-
rameters, αt = 0.3 ∀ t and γt = 0.5 ∀ t (case 1). The second scenario has
parameter instability from a structural break, αt = γt = 0.2, t = 1, . . . , T

2

and αt = γt = 0.8, t = T
2

+ 1, . . . , T (case 2). As in Chen (2005b), different
partitions were also considered for the structural break with consistent re-
sults. The third case extends case 1 to include heteroskedastic errors in the
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generation of yt (case 3). This heteroskedasticity is in the form,

µt = (ηt)εt, εt ∼ N(0, 1), (13)

where η = .01 and 200 ≤ t ≤ 300 leading to significant increase in variance
of µt over the largest simulated data sets (N = 100).

Since the nominal size of the tests can be distorted if underlying test
assumptions do not hold, particularly for modest sample sizes, the empirical
size of all tests was fixed at 5% by simulation of critical values. To allow
comparison of power with the odds ratio test (for which the nominal size
is not fixed since it minimizes a linear combination of the type I and II
errors), critical odds ratio values for AO were also computed to obtain an
approximate 5% rejection rate when the null hypothesis is true. Table 1 shows
the empirical size of each test by case and sample size. The clustering of the
values around 5% indicates that the empirical rejection rates are comparable.

Table 1: Empirical Size (Nominal Size 5%)

Case 1 Case 2 Case 3
Sample Size 30 60 100 30 60 100 30 60 100
F 0.048 0.050 0.050 0.052 0.051 0.048 0.048 0.053 0.052
Wald - - - - - - 0.052 0.049 0.049
AT75 0.051 0.053 0.047 0.050 0.051 0.044 0.052 0.048 0.051
AO 0.050 0.057 0.043 0.057 0.053 0.050 0.040 0.050 0.048

Table 2: Empirical Power

Case 1 Case 2 Case 3
Sample Size 30 60 100 30 60 100 30 60 100
F 0.320 0.642 0.862 0.344 0.580 0.876 0.097 0.215 0.396
Wald - - - - - - 0.106 0.224 0.406
AT75 0.224 0.446 0.698 0.170 0.362 0.520 0.123 0.161 0.180
AO 0.322 0.560 0.764 0.342 0.566 0.810 0.105 0.203 0.339

Table 2 shows the empirical rejection rates over 103 iterations when φ =
0.30. Figures 2 and 3 present power curves for case 1 and 2. For example,
Figures 2a to 2c provide power curves for each sample size examined by
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increasing the value of φ in increments of 0.02 over the interval of [0, 1],
with the empirical size fixed at 5% by selecting the critical value from the
simulations when φ = 0, and 500 replications performed at each increment.
Figure 2d shows all three sample size power curves together. As expected,
the increase in sample size shifts the curve up as parameter estimates become
more precise and the posterior predictive distribution exhibits less variance.
Figures 2d and 3d show that F and AO have roughly double the power of
AT75 in terms of sample size required to attain a particular empirical rejection
rate.

Figure 2: Case 1 Empirical Rejection Rates

(a) Empirical Power: T = 30 (b) Empirical Power: T = 60

(c) Empirical Power: T = 100 (d) Empirical Power: All

Across all three sample sizes and cases, the proposed test procedure ex-
hibits greater statistical power than AT75, with power close to that of the
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in-sample F -test. The results also indicate that structural breaks facilitate
an increase in power for the out-of-sample tests.

Figure 3: Case 2 Empirical Rejection Rates

(a) Empirical Power: T = 30 (b) Empirical Power: T = 60

(c) Empirical Power: T = 100 (d) Empirical Power: All

3.2 Three variable VAR

To examine the effects of additional variables in the VAR process on test
performance, an additional variable, zt, was included in the VAR DGP,

ytxt
zt

 =

0.3
0.2
0.8

+

0.20 βx βz
0.00 0.25 0.00
0.00 0.00 0.45

yt−1

xt−1

zt−1

+

εytεxt
εzt

 ,
εytεxt
εzt

 ∼MVN(0, I3).

(14)
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Table 3: Empirical Size (Nominal Size 5%): Case 4

X 6→ Y Z 6→ Y
Sample Size 30 60 100 30 60 100
F 0.050 0.050 0.048 0.052 0.054 0.051
AT75 0.040 0.059 0.046 0.055 0.049 0.051
AO 0.052 0.064 0.066 0.051 0.053 0.062

Table 4: Empirical Power: Case 4

X 6→ Y Z 6→ Y
Sample Size 30 60 100 30 60 100
F 0.306 0.623 0.846 0.323 0.668 0.896
AT75 0.189 0.435 0.615 0.213 0.417 0.637
AO 0.296 0.577 0.753 0.299 0.612 0.817

Table 3 presents empirical size results from simulations designed to select
an approximate 5% critical value for each test in this case. Table 4 presents
the empirical rejection rates as T increases. The results are comparable to
the two variable VAR specification with AO consistently outperforming AT75

by a substantial margin.

3.3 Misspecified model

In practice, the underlying DGP is unknown, so a model selection process
must be undertaken prior to testing. This selection process typically involves
choice of lag length, p, for the VAR model. The standard approach to lag
length selection is to use model selection criteria, with the Akaike Information
Criterion (AIC) and the Schwarz Criterion (BIC) being the most popular and
the best performers in MC studies (Mills and Prasad, 1992; Cornwall and
Mills, 2017). An alternative approach, explored in Cornwall and Mills (2017),
is to use the LOO-CV out-of-sample prediction algorithm herein to compare
predictive performance of VARs with different lag lengths, selecting the lag
lengths with the best predictive performance. This alternative predictive lag
length selection procedure is thus very similar to the GC testing procedure
in Algorithm 1. Since none of these procedures is guaranteed to choose
the best possible representation of the underlying DGP (and a VAR model
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is, in general, not the true DGP for actual data), some evidence on test
performance when lag length is misspecified is provided below from an MC
study using a different estimation and testing model to the true DGP. The
DGP for this case is,

yt = φ0 + φ1yt−1 + φ2yt−2 + φ3yt−3 + β1xt−1 + β2xt−2 + εt, (15)

whereas the estimation and testing model is,

yt = φ0 + φ1yt−1 + β1xt−1 + β2xt−2 + β3xt−3 + εt. (16)

Table 5 provides the empirical rejection rates when the null hypothesis of no
GC is true (Size) and false (Power). The results are again consistent with
the previous results, with AO performance close to that of the in-sample
F test, outperforming AT75 for all sample sizes. These results also provide
evidence on the effect of increasing the number of observations omitted from
estimation to allow out-of-sample prediction, k, or increasing the model lag
length, p. Either k or p increasing leads to a larger number of observations
being omitted from estimation (since k + p observations must be omitted to
prevent the information contained in the k observations from contaminating
the estimation step through lagged values). As expected, as k + p increases
the power declines, though not substantially: for T = 100, with one lag of x
and y (Table 2, case 2), the empirical rejection rate for AO is 0.810, whereas
with an additional two lags of x and model misspecification, the rejection
rate declines to 0.767 (Table 5).

Table 5: Misspecified Model: Size and Power

Size Power
Sample Size 30 60 100 30 60 100
F 0.052 0.040 0.053 0.327 0.704 0.876
Wald 0.046 0.050 0.051 0.245 0.505 0.741
AT75 0.059 0.056 0.047 0.202 0.462 0.589
AO 0.057 0.047 0.068 0.259 0.624 0.767

In addition to the results presented above, a number of other DGPs were
explored, including those in Mills and Prasad (1992), McCracken (2007) and
Ashley and Tsang (2014). The results were consistent across all DGPs consid-
ered, with the new predictive test consistently outperforming AT75, showing
minimal loss of power when compared to the in-sample F -test.
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4 An Empirical Application

Granger causality testing has seen extensive empirical use in the context of
the Phillips curve, evaluating evidence of a predictive relationship between
inflation and unemployment (Atkeson and Ohanian, 2001; Clark and Mc-
Cracken, 2006; Stock and Watson, 2007; Granger and Jeon, 2011). To eval-
uate this evidence using the proposed test procedure, data for the following
variables were obtained: U.S. Personal Consumer Expenditures (PCE), U.S.
Personal Consumer Expenditures excluding food and energy (PCE-Core)
(U.S. Bureau of Economic Analysis, 2018b), U.S. Consumer Price Index -
All goods (CPI) (Organization for Economic Co-operation and Development,
2018), U.S. Gross Domestic Product (GDP) (U.S. Bureau of Economic Anal-
ysis, 2018a), and U.S. Unemployment Rate (URT) (U.S. Bureau of Labor
Statistics, 2018). All data are quarterly from 1963 (Q1) to 2018 (Q1), and
were seasonally adjusted by the source agency.

The order of integration of each variable was determined by examining
the standard deviation and autocorrelation plots pre and post differencing,
and the Augmented Dickey-Fuller test. The results indicated that the in-
flation measures were all integrated of order 2, I(2), whereas GDP and the
unemployment rate were both I(1), matching findings in previous studies.
Appropriate lag lengths were selected using both AIC and BIC. Table 6 pro-
vides GC test results for the full sample. In the table, 6→ denotes the null
hypothesis of no GC, e.g. H0 : URT 6→ CPI states the hypothesis that
the unemployment rate does not Granger cause the inflation rate as mea-
sured by the second difference of the CPI. The in-sample F -test indicates
there is sufficient evidence to reject the null hypothesis for two out of the
three measures of inflation (CPI and PCE). In contrast, the posterior odds,
AO are much less than 4:1 which approximately matches a 10% sig. level
(Mills, 2018), so the AO test indicates little evidence to suggest there is a
Granger causal relationship for both L1 and L2 loss. As a benchmark, test-
ing H0 : URT 6→ GDP and H0 : GDP 6→ URT , which one would expect
to reject, indicates strong to decisive evidence against the null hypothesis
from both the AO (with odds of approx. 30:1 matching a 1% significance
level)and the F test. For both the in-sample F -test and the AO test with L1
and L2 loss, the results remain unchanged if first differences of the inflation
measures are employed.
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Table 6: GC Test Results: Full Sample

Test In-Sample F P-Value AO L1 AO L2

H0 : URT 6→ CPI 7.27 0.000 1.07 1.16
H0 : URT 6→ PCE 4.15 0.007 1.08 1.11
H0 : URT 6→ PCEc 1.93 0.127 1.00 1.01
H0 : URT 6→ GDP 36.2 0.000 227.7 73.1
H0 : GDP 6→ URT 35.0 0.000 84.5 38.0

The sample was also split into two sections, pre and post 1984, based on
estimates of the great moderation (Stock and Watson, 2007, Atkeson and
Ohanian, 2001). Table 8 shows test results for the post 1984 sample. The in-
sample F -test provides sufficient evidence to reject the null hypothesis for all
three measures of inflation. On the other hand, the AO test for both L1 and
L2 loss indicates no evidence of Granger causality between the unemployment
rate and inflation. Pre 1984 tests can be found in Table 7, where the results
are more consistent across the tests, with the in-sample F-test also failing
to reject the null hypothesis of no Granger causality for some measures of
inflation.

The results from the proposed testing method differ from previous studies
in finding insufficient evidence in both pre and post 1984 samples to reject the
null hypothesis of no Granger Causality. This supports the assertion by Stock
and Watson (2007) that “it has become much more difficult for an inflation
forecaster to provide value added beyond a univariate model.” Interestingly,
if the sample is restricted to only the 1960s, the quintessential example in
the literature, then the new testing procedure indicates substantial evidence
of a Granger causal relationship.

Table 7: GC Test Results: Post 1984 Sample

Test In-Sample F P-Value AO L1 AO L2

H0 : URT 6→ CPI 2.67 0.050 1.04 1.04
H0 : URT 6→ PCE 3.72 0.013 1.00 1.05
H0 : URT 6→ PCEc 2.63 0.053 0.99 0.99
H0 : URT 6→ GDP 10.5 0.000 2.07 2.00
H0 : GDP 6→ URT 14.8 0.000 5.50 3.99
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Table 8: GC Test Results: Pre 1984 Sample

Test In-Sample F P-Value AO L1 AO L2

H0 : URT 6→ CPI 7.43 0.000 1.68 1.60
H0 : URT 6→ PCE 2.53 0.063 1.04 1.04
H0 : URT 6→ PCEc 1.04 0.378 1.04 1.01
H0 : URT 6→ GDP 24.9 0.000 119.2 60.2
H0 : GDP 6→ URT 21.0 0.000 37.7 18.7

5 Conclusion

In this paper, a new out-of-sample Granger causality testing procedure is
presented that combines cross validation techniques with MCMC posterior
simulation methods. A Monte Carlo study comparing empirical rejection
rates for the new testing procedure with the in-sample F -test and the Ash-
ley and Tsang (2014) 75th percentile pseudo-F -statistic indicates that the
new test provides substantial improvement in statistical power over existing
out-of-sample tests. Moreover, this new out-of-sample test, under conditions
that are ideal for an in-sample test, produces power similar to the in-sample
F -test. These simulation results suggest that out-of-sample predictive infer-
ence in a cross-validation framework can provide robust testing for Granger
Causality even with modest sample sizes.

Out-of-sample tests avoid potential over-fitting and pretest estimator
bias, and provide a more rigorous scientific procedure. Using the proposed
methodology, the exact posterior predictive distribution for any test statistic
can be obtained, allowing for out-of-sample predictive inference and testing in
small samples. The test procedure is relatively easy to implement in practice
(code is available at: https://github.com/tszanalytics/GrangerCausality) and
has reasonably low computational cost. The procedure benefits from all the
advantages of MCMC posterior simulation, and so can be readily extended
to more complex nonlinear models.

The proposed procedure is applied to investigate the unemployment-
inflation Phillips relationship in the U.S. using quarterly data from 1963:Q1
to 2018:Q1. Contrary to the findings from in-sample Granger causality test-
ing, out-of-sample testing finds little evidence of a relationship.

19



References

Arlot, S., A. Celisse, et al. (2010). A survey of cross-validation procedures
for model selection. Statistics surveys 4, 40–79.

Ashley, R., C. W. Granger, and R. Schmalensee (1980). Advertising and
aggregate consumption: an analysis of causality. Econometrica, 1149–
1167.

Ashley, R. A. and K. P. Tsang (2014). Credible Granger-causality inference
with modest sample lengths: a cross-sample validation approach. Econo-
metrics 2 (1), 72–91.

Atkeson, A. and L. E. Ohanian (2001). Are Phillips curves useful for fore-
casting inflation? Quarterly Review 25 (1), 2.

Attanasio, A., A. Pasini, and U. Triacca (2012). A contribution to attribu-
tion of recent global warming by out-of-sample Granger causality analysis.
Atmospheric Science Letters 13 (1), 67–72.

Barnett, L., A. B. Barrett, and A. K. Seth (2009). Granger causality and
transfer entropy are equivalent for Gaussian variables. Physical Review
Letters 103 (23), 238701.

Barnett, L., A. B. Barrett, and A. K. Seth (2017). Reply to Stokes and
Purdon: A study of problems encountered in Granger causality analysis
from a neuroscience perspective. arXiv preprint arXiv:1708.08001 .

Barnett, L. and A. K. Seth (2015). Granger causality for state-space models.
Physical Review E 91 (4), 040101.

Chen, M.-H. (2005a). Bayesian computation: From posterior densities to
Bayes factors, marginal likelihoods, and posterior model probabilities. In
D. Dey and C. Rao (Eds.), Bayesian Thinking, Volume 25 of Handbook of
Statistics, pp. 437 – 457. Elsevier.

Chen, S.-S. (2005b). A note on in-sample and out-of-sample tests for Granger
causality. Journal of Forecasting 24 (6), 453–464.

Clark, T. E. (2004). Can out-of-sample forecast comparisons help prevent
overfitting? Journal of Forecasting 23 (2), 115–139.

20



Clark, T. E. and M. W. McCracken (2001). Tests of equal forecast accuracy
and encompassing for nested models. Journal of Econometrics 105 (1),
85–110.

Clark, T. E. and M. W. McCracken (2005). The power of tests of predic-
tive ability in the presence of structural breaks. Journal of Economet-
rics 124 (1), 1–31.

Clark, T. E. and M. W. McCracken (2006). The predictive content of the
output gap for inflation: resolving in-sample and out-of-sample evidence.
Journal of Money, Credit, and Banking 38 (5), 1127–1148.

Cornwall, G. and J. Mills (2017). Prediction based model selection criteria.
manuscript.

Dhamala, M., G. Rangarajan, and M. Ding (2008). Estimating Granger
causality from Fourier and wavelet transforms of time series data. Physical
Review Letters 100 (1), 018701.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy.
Journal of Business & Economic Statistics 13 (3), 253–263.

Diks, C. and M. Wolski (2016). Nonlinear Granger causality: Guidelines for
multivariate analysis. Journal of Applied Econometrics 31 (7), 1333–1351.

Ghysels, E., J. B. Hill, and K. Motegi (2016). Testing for Granger causality
with mixed frequency data. Journal of Econometrics 192 (1), 207–230.

Granger, C. W. and Y. Jeon (2011). The evolution of the Phillips curve: a
modern time series viewpoint. Economica 78 (309), 51–66.

Hu, X., S. Hu, J. Zhang, W. Kong, and Y. Cao (2016). A fatal drawback of
the widely used Granger causality in neuroscience. In Information Science
and Technology (ICIST), 2016 Sixth International Conference on, pp. 61–
65. IEEE.

Inoue, A. and L. Kilian (2005). In-sample or out-of-sample tests of pre-
dictability: Which one should we use? Econometric Reviews 23 (4), 371–
402.

Koop, G., D. J. Poirier, and J. L. Tobias (2007). Bayesian Econometric
Methods. Cambridge University Press.

21



Liao, W., J. Ding, D. Marinazzo, Q. Xu, Z. Wang, C. Yuan, Z. Zhang, G. Lu,
and H. Chen (2011). Small-world directed networks in the human brain:
multivariate Granger causality analysis of resting-state fMRI. Neuroim-
age 54 (4), 2683–2694.

McCracken, M. W. (2007). Asymptotics for out of sample tests of Granger
causality. Journal of Econometrics 140 (2), 719–752.

Mills, J. (2018). Objective Bayesian Precise Hypothesis Testing. manuscript.

Mills, J. A. and H. Namavari (2017). Objective Bayesian ANOVA Testing.
University of Cincinnati .

Mills, J. A. and K. Prasad (1992). A comparison of model selection criteria.
Econometric reviews 11 (2), 201–234.

Organization for Economic Co-operation and Development (2018). Consumer
price index: Total all items for the United States.

Picard, R. R. and R. D. Cook (1984). Cross-validation of regression models.
Journal of the American Statistical Association 79 (387), 575–583.

Poirier, D. J. (1988). Causal relationships and replicability. Journal of Econo-
metrics 39, 213–234.

Roebroeck, A., E. Formisano, and R. Goebel (2005). Mapping directed influ-
ence over the brain using Granger causality and fMRI. Neuroimage 25 (1),
230–242.

Roebroeck, A., E. Formisano, and R. Goebel (2011). The identification of
interacting networks in the brain using fMRI: model selection, causality
and deconvolution. Neuroimage 58 (2), 296–302.

Seth, A. (2007). Granger causality. Scholarpedia 2 (7), 1667.

Sims, C. A. (1972). Money, income, and causality. The American Economic
Review 62 (4), 540–552.

Stock, J. H. and M. W. Watson (2007). Why has US inflation become harder
to forecast? Journal of Money, Credit and Banking 39 (s1), 3–33.

22



Stokes, P. A. and P. L. Purdon (2017). A study of problems encountered in
Granger causality analysis from a neuroscience perspective. Proceedings of
the National Academy of Sciences 114 (34), E7063–E7072.

Stone, M. (1977). Asymptotics for and against cross-validation. Biometrika,
29–35.

U.S. Bureau of Economic Analysis (2018a). Table 1.1.6. Real Gross Domestic
Product, Chained Dollars.

U.S. Bureau of Economic Analysis (2018b). Table 2.4.4U Price Indexes for
Personal Consumption Expenditures by Type of Product.

U.S. Bureau of Labor Statistics (2018). Civilian Unemployment Rate.

Yu, L., J. Li, L. Tang, and S. Wang (2015). Linear and nonlinear Granger
causality investigation between carbon market and crude oil market: A
multi-scale approach. Energy Economics 51, 300–311.

Zhang, D. D., H. F. Lee, C. Wang, B. Li, Q. Pei, J. Zhang, and Y. An
(2011). The causality analysis of climate change and large-scale human
crisis. Proceedings of the National Academy of Sciences 108 (42), 17296–
17301.

Zhang, Y. and Y. Yang (2015). Cross-validation for selecting a model selec-
tion procedure. Journal of Econometrics 187 (1), 95–112.

Acknowledgements

The authors gratefully acknowledge support from the Taft Fund, University
of Cincinnati, and feedback from Rick Ashley and participants at the Midwest
Econometrics Group Meetings. Any views expressed here are those of the
authors and not necessarily those of the Bureau of Economic Analysis or U.S.
Department of Commerce.

23


